「利潤」究竟是什麼
這一講不是要講經商,我們小小地梳理一個大大的話題:從經濟學角度看,人生應該追求什麼。
簡單地說,最值得追求的東西是「利潤」。
我不信你會不想要利潤。利潤是收入減去成本剩下的那一部分,是收穫比付出多出來的部分。利潤是正的,說明你的一切努力都沒有白費,說明瞭社會對你的肯定。利潤要是負的,就說明你創造的價值配不上你的一番折騰。
但你要是細想,利潤是一個神秘的東西。
*
你必須直接去市場上買賣點什麼東西才談得上利潤。上班拿固定工資是沒有利潤的。哪怕你工資再高,那也只是你的勞動所得,都是根據你這個水平,你應該得的,是市場認為正好等於你的付出的回報 —— 這表現在你要是不上班就沒有收入。
而利潤則是「不該得」的東西,可以說是躺著賺的錢。這個性質曾經使得有些思想家認為拿利潤是不道德的。
馬克思譴責利潤。你開個工廠,買了機器和廠房,雇了工人,進了一批原材料,工人生產出產品,你把產品賣掉。然後你一算賬,賣產品的收入減去工人工資、機器廠房和原材料的花費,還多出來了一筆錢,這就是利潤。你欣然把這筆錢放入自己口袋。馬克思說且慢!工人累死累活工作才拿那麼一點工資,你幹什麼了就拿這麼多錢,你那叫剩餘價值!你無償佔有了別人創造的價值。
你當然不服氣。你說不是啊,我管理工人,我組織生產,我聯繫了進貨和銷售,我安排廠裡的大事小情,這怎麼不是創造價值呢?
馬克思會告訴你,你做的這些事兒的確也是勞動,你可以拿一份高工資,但你的工資不會像利潤那麼高。你完全可以雇一個職業經理人替你管理工廠。你把職業經理人的工資發了,還會剩下一筆錢,這筆錢才是真正的利潤。
這個計算讓馬克思深感憤怒,產生了深遠的影響……咱們還是單說資本主義這邊對此是怎麼想的。崇尚市場的經濟學家也算了這個賬,但結果是利潤好像不應該存在。
我們假設老張開工廠賺了一萬塊錢的「淨」利潤。這個是把老張本人付出的管理勞動該拿的那部分報酬去掉之後剩下的錢,是老張「躺賺」的錢。那如果是這樣的話,市場上就應該出來一個老李:老李說既然是躺賺,我不用那麼高的利潤,我躺賺五千元就行,我願意把商品賣便宜點,給工人工資高點。那你說老張能幹過老李嗎?
你很容易想到老張繼續存在的理由。比如老張有資本而老李沒有。或者老張跟政府關係好,壟斷了這塊業務。或者老張掌握一個技術護城河,老李學不會。但是對經濟學家來說這些都不是本質問題:資本可以貸款,跟政府的關係可以用一個更好的條件重新談,技術可以請人研發。事實上,經濟學家的推理是,哪怕現在還沒有一個具體的老李,只要市場存在老李出現的可能性,老張就不敢壓榨太高的利潤,他必須用比較低的價格和比較高的工資預防老李的出現。
要這麼算的話,市場充分競爭的結果一定會把利潤變成 0。總會有一個老王出來,說我就當自己是個職業經理人跟大家交朋友算了,我拿個應得的工資就行,利潤我不要。
那真實世界里的利潤是從哪來的呢?當然市場不可能是充分競爭的,總會有些老張偶爾能享受到利潤……但市場力量應該讓利潤越來越薄才對。經濟學家必須找到一個產生利潤的過硬的機制,否則解釋不了為什麼總有人拿那麼高的利潤……甚至解釋不了為什麼有人願意開公司。
*
利潤從哪裡來這個問題的解決,在經濟學史上是一個里程碑。1921年,美國經濟學家弗蘭克·奈特(Frank Knight, 1885-1972)出版了《風險、不確定性與利潤》(Risk, Uncertainty, and Profit)一書 [1],提出了一個傳世的洞見:利潤來自不確定性。
組織生產、採購和營銷、日常的管理,企業中一切常規的操作都可以由拿固定工資的人做,只有一件事必須由企業家本人做,那就是風險決策。
比如說,為了在今年秋季上市一批新女裝,我們必須在夏天就定下來款式,備工備料,展開生產。可是秋天還沒到,現在誰也不知道到時候流行哪個款式,那我們生產什麼呢?這個決策,必須由企業家本人做出。為什麼?因為他是承擔決策風險的人。
如果你賭對了,秋季正好流行這款女裝,因為別的服裝廠沒生產只有你生產出來了,你就佔據了稀缺,你就可以要一個高價,利潤歸你。你要是賭錯了,到時候服裝賣不出去,工人和經理們還是會拿同樣的工資,損失也歸你。
生產、日常管理、冒險,是三種不同的能力。為什麼企業家要開公司?因為他敢冒險。為什麼工人和經理人選擇拿固定工資?因為他們不想冒險。
這個道理聽著挺簡單,但是其中有個大學問。奈特之前的經濟學家也想到了企業家承擔風險,但是他們沒搞清楚到底什麼是風險。
*
如果女裝只有比如粉色和綠色兩個選擇,而且你明確知道它們流行的可能性都是 50% —— 那這個風險其實不用企業家承擔。因為你可以買保險!概率已知的風險都是可以管理的。銀行可以給生產兩款女裝的工廠都提供貸款,到時候肯定一個賠錢一個賺錢,只要利息和保險合適,銀行和企業雙贏。有這個保險機制在,大家誰都不用冒險,可以各自拿一份固定工資,根本不需要企業家。
奈特的真正貢獻在於,他把風險給分成了兩種。
第一種就叫「風險(risk)」,但是特指那些已知概率大小的風險。這種可以用保險解決,不需要企業家。
第二種叫「不確定性(uncertainty)」,是指那些無法評估概率大小,可能是從來沒出現過的新事物,甚至是現在人們根本無法想象的東西。這個不確定性,才是企業家存在的理由,才是利潤的來源。
現代經濟學家把這個不確定性特別稱為「奈特不確定性(Knightian uncertainty)」。我們專欄講過 [2],統計學家有個更科學的說法。已知概率大小的,叫做「偶然不確定性(Aleatoric uncertainty)」, 也叫統計不確定性。不知道概率大小的,叫做「認知不確定性(Epistemic uncertainty)」,也叫系統不確定性。前者發生的事情都是你事先能想到的,後者則是你想不到的。比如「黑天鵝」事件,就是一種認知不確定性。
你開一個賭場。賭場每天都在跟賭徒們賭博,但是因為輸贏的概率是固定的而且有利於你,所以你的日常經營本身並不是冒險。真正的冒險是要不要開這個賭場:你能預測客流量足夠讓你收回投資嗎?你能擺平當地黑社會嗎?你能確保政府發展博彩業的政策不會變嗎?這些事兒沒法計算概率。
搞定這些不確定性,才是企業家該乾的事兒,也是企業家的回報所在。
流行趨勢通常不能用以往的經驗判斷。有個企業家認准了一個全新的款式,說我非得生產這個,銀行能給他擔保嗎?這個不確定性沒法系統化管理,他自己必須承擔 —— 這才是企業家存在的意義。你要是願意給這樣的項目投資、分擔不確定性 —— 而不是把錢交給銀行拿固定的利息 —— 你也是企業家。
要做服裝這一行的企業家,你肯定得對流行趨勢有個很好的感覺才行。不過企業家本人不一定非得特別懂女裝 —— 他完全可以請人來給他設計,只是設計師不承擔不確定性,人家拿固定的設計費,風險還是要由企業家承擔。
簡單說,企業家,是市場上的 player。他拒絕聽別人的安排,非得按照自己的想法決定做什麼,然後他安排別人也按照這個想法去做,最後他獨自承擔後果。
*
奈特找到了公司存在的最根本理由。市場競爭再充分也不可能是絕對可預測的,未來總會有各種各樣的不確定性,需要企業家在各個方向上大膽探索。奈特後來成為經濟學的大宗師,他本人沒得過諾貝爾獎但是他有五個弟子得了諾貝爾經濟學獎,他是「芝加哥學派」的祖師爺。
奈特之後,別的經濟學家又找到了公司存在的其他理由。比如科斯說公司減少了交易成本能起到協調作用。張五常說公司提供了合約。還有人說公司解決了監督、提供了資源獨特性……等等等 [3],但是奈特這個「不確定性」的說法,是最根本的。
如果從某一天開始,世界上再也沒有不確定性了,那麼市場的力量就會迅速把公司利潤變成 0:企業家就不需要存在,大家都應該拿固定工資。
其實現在企業家的日子也不好過。我們看街上那些餐館,開了關關了開,真正能長期賺錢的沒有幾家,可能大部分老闆都是賠錢。沒有稀缺是不可能賺到錢的,但是利潤只發生在你剛剛掌握某種稀缺、而別人還沒有跟上的那個時間段。別人跟上了,模仿了,你就必須再去尋找新的不確定性。
一切賺錢的生意都有不確定性。你把一大筆錢放銀行裡拿利息,那叫躺著花錢不叫躺著賺錢。哪怕是買幾套房子收租金,你都得面對房產市場的不確定性。
世界上沒有一勞永逸的利潤,也沒有真正躺著賺錢的企業家。
那你說平均而言,企業家的收益是正的還是負的呢?我到底該不該去做個企業家呢?沒有答案。有答案就不叫不確定性了。
*
不確定性都是從哪來的呢?一個有意思的不確定性是中國經濟學家張維迎在 2008 年的一次演講中說的 [4]。他說中國改革開放這麼多年之中,商業活動最大的不確定性,是「體制的不確定性,政策的不確定性,政府行為的不確定性。」這體現在政府對資源的調配非常隨意。
張維迎當時說,正是這個不確定性加劇了中國的貧富差距。在中國市場化程度高,體制不確定性低的地區,比如浙江省,人們更富裕,收入差距反而更低:因為利潤分布更均勻。
這個規律是不確定性越大,利潤就越高 —— 企業家為利潤而奮鬥,但是市場看不見的手恰恰在降低總利潤。是那些看得見的手,提供了額外的不確定性,才給人帶來不合理的利潤。
那你說如果我們把體制給理順,讓競爭越來越公平,未來的不確定性會不會越來越少呢?不一定。
*
奈特列舉了不確定性的好幾種來源,比如未來人口的變化、資源的供給等等。其中我們現代人最關注的肯定是創新。創新本質上是不可預測的,你不知道未來會有什麼新技術出來,你也不知道一個新技術出來會不會被市場接受。一切創新都有強烈的冒險成分,關於這一點已經有太多經濟學家討論了。
而奈特更厲害的一個洞見,則是「價值」的不確定性。說白了就是人的慾望的不確定性,你不知道未來的人喜歡什麼。奈特 1924 年發表了一篇文章叫《經濟學中科學方法的局限性》,說經濟學不僅僅是什麼資源的有效調配,把一個什麼價值函數最大化的問題,因為人的價值觀是會變的 ——
「人生在根本上是對價值的探索,是努力發現新價值,而不是照著現有的價值觀把生產和享受最大化。」[5]
一百多年前整天坐馬車的人沒有想要一輛汽車。2006 年以前的人並不期待智能手機。今天的多數人不能理解馬斯克為什麼非得讓人去火星。人生的終極任務不是滿足某種價值,而是發現和創造新價值。
因為這個見識,奈特後來被認為是個道德哲學家,而不僅僅是個經濟學家。
也因為這一點,你不需要非得是個企業家,也不一定非得拿金錢利潤。藝術家、教育家、每個工人和管理者、包括每個消費者,都可以是價值的發現者和不確定性的製造者。
只要把周圍的世界往你想的那個方向上推動一小步,就算是你的成功。
注釋
[1] 弗蘭克·奈特,《風險、不確定性和利潤》,中文有郭武軍、劉亮翻譯版,華夏出版社 2013。
[2] 精英日課第三季,哪種不確定性?什麼黑天鵝?
[3] 關於公司為什麼存在的理論發展總結,可參考向松祚,《新經濟學》第二卷,新經濟範式。
[4] 張維迎的這次演講首次發表於《經濟觀察報》2008年1月20日,修改後的文章曾收入作者主編的《中國改革30年:10位經濟學家的思考》。
[5] Frank Knight (1924), "The limitations of scientific method in economics」, 原文是「Now this, we shall contend, is not very far; the scientific view of life is a limited and partial view; life is at bottom an exploration in the field of values, an attempt to discover values, rather than on the basis of knowledge of them to produce and enjoy them to the greatest possible extent. We strive to "know ourselves," to find out our real wants, more than to get what we want. This fact sets a first and most sweeping limitation to the conception of economics as a science.」
分布函數意思 在 每天努力Hack國家!士修的17時間 Facebook 的精選貼文
看到一篇熱門分享的貼文《一堂物理課,了解貧富差距的根源》,在某個經濟學社團引發激烈的學術(?)討論。合先敘明,我認為這位老師非常認真,很用心將物理學、經濟學和哲學連結起來。
Liou YanTing:一堂物理課,了解貧富差距的根源
https://www.facebook.com/permalink.php?story_fbid=3403616276360627&id=100001368650813
不過,將猜拳遊戲與氣體動力論胡亂連結,反而模糊了一些真正能套用的概念。在談論分配正義時,將財富自由分配簡化為貧富不均的對立,然後傾向政府需要介入。這是一種非常危險的「正義」,我不認同這叫做所謂「科學與人文的思辨之旅」。
※本篇附圖是網友提供:「沒有要酸的意思但我真的想到這張圖。」
Part 1
電容放電曲線呈指數衰減,放射線衰退曲線呈指數衰減,跟美國財富分配圖是不是有異曲同工之妙呢?紫外光殺菌的曲線也呈指數衰減,是不是跟猜拳遊戲還有財富分佈一樣呢?
這是典型的物理半調子。物理模型的相似性,來自數學模式的相似性,與物理現象無關。我最常舉的例子是,測不準定理來自波的數學性質,與量子力學無關的訊號波,也會有測不準定理,這些都可以用傅立葉分析推導。量子力學的意義在於賦予測不準定理另外的物理詮釋。
但我發現很多物理系學生誤以為測不準定理一定是量子力學的現象,甚至到研究所階段都不知道電機系做訊號對測不準的理解,搞不好比物理系更深刻。這是一種鄙視鏈和反鄙視鏈。
所以,文中的波茲曼分布,來自統計的數學性質,並不建立在氣體動力論之上。更何況,指數遞減現象在各種科學和工程領域都很常見,這是自然的數學模式。根據奧坎剃刀原則,你扯進氣體動力論,只是騙不懂物理的外行人,跟你一起誤解物理罷了。
只要某一現象符合「衰減速度與值成比例」性質,寫下數學式和解微分方程的結果,就必然出現指數衰減曲線。我認為這是數學程度40分就能理解,物理程度大概要60分,才不會被表象迷惑的性質。
數學系的訓練是提取抽象模式,但一般數學系學生沉迷於符號推演之美,不去思考真實問題。物理系的訓練是建構近似模型,但一般物理系學生時常忘記模型僅是近似,並且把數學模式的必然性誤理解為巧妙的真理。
這個我特別有感,因為我當年同時修數學系和物理系的課,花了很多時間掙扎兩邊做學問方法不相容。物理系學生大三修完量子物理,幾乎不會去思考波動力學為何與矩陣力學等價,對修過微分方程和線性代數的我卻是很自然的事,然而數學系學生卻大多不會碰觸量子力學,無從思考他們所學理論意義何在。
原文作者所犯的其實是物理系常見通病,連許多教授都無法倖免。由於缺乏對物理模型和數學模式的深刻理解,只由結果腦補關聯性,甚至把沒有物理意義的中間演算,硬套憑空想像的詮釋,美其名為物理圖像。我大學時期聽到這類似是而非的所謂「物理解釋」都覺得異常痛苦。
例如上述的指數衰減,如果你問一個成績優秀的物理系學生,他或許會列舉許多指數衰減的物理現象,並讚嘆物理規律的美妙。但能回答下一個問題的學生就少了,為什麼這些現象都呈指數衰減?
這問題其實很簡單,只要回到微分方程去看,它的本質是衰減速度與值成比例,凡是符合此性質,就必然得到指數衰減的數學規律。物理是參透自然的數學語言,對自然的理解,很大一部分取決於語言能力的掌握,即為我所強調的數學模式。
Part 2
對岸的知乎有一個討論串,更深入地探討了分配遊戲的模擬。
房间内有 100 人,每人有 100 块,每分钟随机给另一个人 1 块,最后这个房间内的财富分布怎样? - 知乎
https://www.zhihu.com/question/62250384
我覺得這篇文章沒什麼問題,你注意到他說隨機遊走相當於求解離散空間的熱傳導方程,這是將一個待解問題轉化為一個已知問題,純粹是數學模式的相似性,他沒有將隨機遊走的分布解,建立在熱力學物理之上。
貧富不均為穩定態,均富為非穩定態,其反直覺的思維誤區在於,「平均分布」僅是「穩定分布」的一種少見子集,絕大多數情況的「穩定分布」不是「平均分布」。例如,二項分布、常態分布,都不是人人均等。
說到底,「平均值」僅是平均後的一個值,常態分布以平均值為對稱,不代表區間每個值一定均等。
統計分布的穩定態,取決於機率密度函數的長相。你可以批評這個數據模擬,誤用熱力學模型解釋人類經濟現象,真實世界不存在完全隨機的交換行為等等。但這些批評並不到位。
因為它只是一個經濟行為的玩具模型(toy model),遊戲規則決定機率密度函數,進而決定穩定態的分布,算出來正好是狄利克雷分布。又恰巧與離散空間的熱傳導方程相似,則是後話。
我們也可以用一些物理的解釋。大多數人誤解了,物理的結果是「穩定態」,本來就不一定是「均等態」。在這個實驗之中,什麼條件會出現均等態?或許是每分鐘隨機分配給所有人自已手上所有的財產,能量的交換不加任何限制。
所以反過來想,遊戲規則限制了每分鐘隨機只能給另一個人1塊,當我因為機率的偶然,手上財產從100元掉到80元,我就更往破產的機率傾斜了。反之,我從100元變為120元,但下一回合我仍然只要給別人1塊,我的優勢就隨時間演化變大了。
我個人特別喜歡它後續做的「允許負債」模擬,以及「努力多1%競爭優勢」模擬,令人慶幸沒有出現反直覺的悲劇結果。自由競爭之下努力有意義,相當勵志,不是嗎?
經濟學的解釋,當然不能只是「要求平等均富的社會本身正是反自然的存在」,那僅僅只是「限定遊戲規則之下貧富不均是統計的穩定態」。
至於這個遊戲規則,離真實世界有多遠,當然很遠,但咱們學經濟的講機會成本。你不用這個遊戲規則,用另一個遊戲規則,會不會發生一樣的貧富不均結果?看起來很有可能會,但沒證據我不確定,有一說一才是科學精神。
或許在任何遊戲規則之下,只要不脫離「每分鐘隨機給出的數額有限制」的基本假設,都會跑出貧富不均的分布結果。而這個基本假設,在真實世界中也不可能捨棄,那麼這個數據模擬就有其參考價值。我們可以說,不論任何制度必然會有貧富不均的狀況出現,這才是最正常的現象。
參考閱讀:
巴斯夏的蠟燭工坊:今天臉書有一篇遭到瘋傳的經濟學相關文章,堪稱經濟學程度的照妖鏡
https://www.facebook.com/329896911051695/photos/a.358878471486872/642324269808956/?type=3
(我貢獻了 巴斯夏的蠟燭工坊 這篇文章的某些段落。)
分布函數意思 在 黃土條 Facebook 的最佳貼文
看到一篇熱門分享的貼文《一堂物理課,了解貧富差距的根源》,在某個經濟學社團引發激烈的學術(?)討論。合先敘明,我認為這位老師非常認真,很用心將物理學、經濟學和哲學連結起來。
Liou YanTing:一堂物理課,了解貧富差距的根源
https://www.facebook.com/permalink.php?story_fbid=3403616276360627&id=100001368650813
不過,將猜拳遊戲與氣體動力論胡亂連結,反而模糊了一些真正能套用的概念。在談論分配正義時,將財富自由分配簡化為貧富不均的對立,然後傾向政府需要介入。這是一種非常危險的「正義」,我不認同這叫做所謂「科學與人文的思辨之旅」。
※本篇附圖是網友提供:「沒有要酸的意思但我真的想到這張圖。」
Part 1
電容放電曲線呈指數衰減,放射線衰退曲線呈指數衰減,跟美國財富分配圖是不是有異曲同工之妙呢?紫外光殺菌的曲線也呈指數衰減,是不是跟猜拳遊戲還有財富分佈一樣呢?
這是典型的物理半調子。物理模型的相似性,來自數學模式的相似性,與物理現象無關。我最常舉的例子是,測不準定理來自波的數學性質,與量子力學無關的訊號波,也會有測不準定理,這些都可以用傅立葉分析推導。量子力學的意義在於賦予測不準定理另外的物理詮釋。
但我發現很多物理系學生誤以為測不準定理一定是量子力學的現象,甚至到研究所階段都不知道電機系做訊號對測不準的理解,搞不好比物理系更深刻。這是一種鄙視鏈和反鄙視鏈。
所以,文中的波茲曼分布,來自統計的數學性質,並不建立在氣體動力論之上。更何況,指數遞減現象在各種科學和工程領域都很常見,這是自然的數學模式。根據奧坎剃刀原則,你扯進氣體動力論,只是騙不懂物理的外行人,跟你一起誤解物理罷了。
只要某一現象符合「衰減速度與值成比例」性質,寫下數學式和解微分方程的結果,就必然出現指數衰減曲線。我認為這是數學程度40分就能理解,物理程度大概要60分,才不會被表象迷惑的性質。
數學系的訓練是提取抽象模式,但一般數學系學生沉迷於符號推演之美,不去思考真實問題。物理系的訓練是建構近似模型,但一般物理系學生時常忘記模型僅是近似,並且把數學模式的必然性誤理解為巧妙的真理。
這個我特別有感,因為我當年同時修數學系和物理系的課,花了很多時間掙扎兩邊做學問方法不相容。物理系學生大三修完量子物理,幾乎不會去思考波動力學為何與矩陣力學等價,對修過微分方程和線性代數的我卻是很自然的事,然而數學系學生卻大多不會碰觸量子力學,無從思考他們所學理論意義何在。
原文作者所犯的其實是物理系常見通病,連許多教授都無法倖免。由於缺乏對物理模型和數學模式的深刻理解,只由結果腦補關聯性,甚至把沒有物理意義的中間演算,硬套憑空想像的詮釋,美其名為物理圖像。我大學時期聽到這類似是而非的所謂「物理解釋」都覺得異常痛苦。
例如上述的指數衰減,如果你問一個成績優秀的物理系學生,他或許會列舉許多指數衰減的物理現象,並讚嘆物理規律的美妙。但能回答下一個問題的學生就少了,為什麼這些現象都呈指數衰減?
這問題其實很簡單,只要回到微分方程去看,它的本質是衰減速度與值成比例,凡是符合此性質,就必然得到指數衰減的數學規律。物理是參透自然的數學語言,對自然的理解,很大一部分取決於語言能力的掌握,即為我所強調的數學模式。
Part 2
對岸的知乎有一個討論串,更深入地探討了分配遊戲的模擬。
房间内有 100 人,每人有 100 块,每分钟随机给另一个人 1 块,最后这个房间内的财富分布怎样? - 知乎
https://www.zhihu.com/question/62250384
我覺得這篇文章沒什麼問題,你注意到他說隨機遊走相當於求解離散空間的熱傳導方程,這是將一個待解問題轉化為一個已知問題,純粹是數學模式的相似性,他沒有將隨機遊走的分布解,建立在熱力學物理之上。
貧富不均為穩定態,均富為非穩定態,其反直覺的思維誤區在於,「平均分布」僅是「穩定分布」的一種少見子集,絕大多數情況的「穩定分布」不是「平均分布」。例如,二項分布、常態分布,都不是人人均等。
說到底,「平均值」僅是平均後的一個值,常態分布以平均值為對稱,不代表區間每個值一定均等。
統計分布的穩定態,取決於機率密度函數的長相。你可以批評這個數據模擬,誤用熱力學模型解釋人類經濟現象,真實世界不存在完全隨機的交換行為等等。但這些批評並不到位。
因為它只是一個經濟行為的玩具模型(toy model),遊戲規則決定機率密度函數,進而決定穩定態的分布,算出來正好是狄利克雷分布。又恰巧與離散空間的熱傳導方程相似,則是後話。
我們也可以用一些物理的解釋。大多數人誤解了,物理的結果是「穩定態」,本來就不一定是「均等態」。在這個實驗之中,什麼條件會出現均等態?或許是每分鐘隨機分配給所有人自已手上所有的財產,能量的交換不加任何限制。
所以反過來想,遊戲規則限制了每分鐘隨機只能給另一個人1塊,當我因為機率的偶然,手上財產從100元掉到80元,我就更往破產的機率傾斜了。反之,我從100元變為120元,但下一回合我仍然只要給別人1塊,我的優勢就隨時間演化變大了。
我個人特別喜歡它後續做的「允許負債」模擬,以及「努力多1%競爭優勢」模擬,令人慶幸沒有出現反直覺的悲劇結果。自由競爭之下努力有意義,相當勵志,不是嗎?
經濟學的解釋,當然不能只是「要求平等均富的社會本身正是反自然的存在」,那僅僅只是「限定遊戲規則之下貧富不均是統計的穩定態」。
至於這個遊戲規則,離真實世界有多遠,當然很遠,但咱們學經濟的講機會成本。你不用這個遊戲規則,用另一個遊戲規則,會不會發生一樣的貧富不均結果?看起來很有可能會,但沒證據我不確定,有一說一才是科學精神。
或許在任何遊戲規則之下,只要不脫離「每分鐘隨機給出的數額有限制」的基本假設,都會跑出貧富不均的分布結果。而這個基本假設,在真實世界中也不可能捨棄,那麼這個數據模擬就有其參考價值。我們可以說,不論任何制度必然會有貧富不均的狀況出現,這才是最正常的現象。
參考閱讀:
巴斯夏的蠟燭工坊:今天臉書有一篇遭到瘋傳的經濟學相關文章,堪稱經濟學程度的照妖鏡
https://www.facebook.com/329896911051695/photos/a.358878471486872/642324269808956/?type=3
(我貢獻了 巴斯夏的蠟燭工坊 這篇文章的某些段落。)
分布函數意思 在 第3單元計算的機率分佈:統計方法的數學基礎 的推薦與評價
計算的機率來自數學領域的機率論,使用數學公式演繹這個世界的隨機現象。從這個單元起介紹的五種機率分佈函數,被統計學家用來開發本書陳列的統計方法。要理解如何運用這些 ... ... <看更多>