《麻省理工科技評論 MIT Tech》8/1
* 【改善空氣污染能降低患阿茲海默症風險】
根據 7/26 日在美國丹佛舉行的 2021 年阿茲海默病協會國際會議上發佈的多項研究報告,改善空氣污染會改善認知功能,降低阿茲海默症風險。此前報告曾顯示,長期暴露於空氣污染與阿爾茨海默病相關腦斑有關。而此次會議是第一次累計證據表明,減少污染,特別是空氣中的細顆粒物和燃料燃燒產生的污染物,與降低全因失智症和阿茲海默症風險有關。
* 【MIT科學家研究了如何減少一次性口罩對環境的影響】
據估計,COVID-19大流行期間每天產生多達7200噸的醫療廢物,其中大部分是一次性口罩。近日,麻省理工學院(MIT)的一項新研究指出,通過採用可重復使用的口罩可以大大減少這一損失,該研究計算了幾種不同的口罩使用方案的財務和環境成本。研究人員表示,完全可重復使用的硅膠N95口罩能更大程度地減少浪費,而他們現在正致力於開發這種新型口罩。目前,這項研究已經刊登在《British Medical Journal》上。
* 【新發明的的尿液或血液測試方法可以發現腦腫瘤】
劍橋大學的醫學研究人員開發了兩種新的測試方法,能夠檢測最惡的腦癌膠質瘤。使用新開發的測試可以在病人的尿液或血漿中檢測到腫瘤,這也是世界上第一個此類測試方式。
* 【歐洲科學家開發出可低成本製造發光材料的新技術】
劍橋大學和慕尼黑工業大學領導的研究人員發現,通過將一種材料的每 1000 個原子中的一個換成另一個,他們能夠將一種被稱為鹵化物鈣鈦礦的新材料類發光體的發光能力提高兩倍。該發現有益於製造更有效的低成本發光材料,這些材料具有柔性,並可使用噴墨技術列印。相關研究發表於《美國化學會志》。
* 【哈佛科學家發起伽利略項目,致力尋找宇宙中的外星科技文明】
哈佛帶領的一支科學家團隊,已經發起了一個旨在宇宙中尋找外星生命證據的伽利略項目(Galileo Project)。結合地面望遠鏡、人工智能等方案,這項研究將著重於外星智能的物理例證,而不是源自遙遠文明的電磁信號。
* 【科學家發現潛在療法能提高人類免疫系統在體內搜索和消滅癌細胞的能力】
近日,南安普敦大學和米蘭國家分子遺傳學研究所的研究人員發現了一種潛在的治療方法,可以提高人類免疫系統在體內搜索和消滅癌細胞的能力。研究人員表示,他們已經確定了一種限制調節免疫系統的一組細胞的活動的方法,這反過來可以釋放其他免疫細胞來攻擊癌症患者的腫瘤。目前,這項研究已經發表於《PNAS》。
* 【美國研究團隊在太陽能制氫方面獲得新突破】
數十年來,世界各地的研究人員一直在尋找利用太陽能來制氫的關鍵反應方法,即如何將水分子分解成氫氣和氧氣。儘管大多數努力以失敗而告終,且少數成果也面臨著成本過高的尷尬。德克薩斯大學奧斯汀分校的一支研究團隊,還是設法找到了一種通過厚二氧化硅層來創建導電路徑的方法來有效從水中分離氧分子。該方案能夠低成本地運用,並擴展到大批量生產流程中。有關這項研究的詳情,已經發表在近日出版的《Nature Communications》期刊上。
* 【現近 20% 的原始森林景觀與採礦、石油和天然氣等採掘業特許地相重疊】
國際野生生物保護學會(WCS)和世界自然基金會(WWF)的一項新研究顯示,近 20% 的熱帶原始森林景觀(IFLs)與採礦、石油和天然氣等採掘業的特許地相重疊。重疊的總面積約為97.5萬平方公里,大約相當於埃及的面積。採掘業特許地與熱帶國際森林公園重疊最多,佔總面積的 11.33%,而石油和天然氣特許地的重疊面積佔總面積的 7.85%。該研究發表在《森林與全球變化》上。
* 【MIT研究人員用紅外攝像機和人工智能來預測「沸騰危機」】
最近,麻省理工學院(MIT)核科學與工程系的研究人員,通過訓練一個神經網絡模型來預測「沸騰危機」。研究人員表示,該模型能夠從具有不同形態和潤濕性(或吸濕性)的表面上的氣泡動力學的高分辨率紅外測量中預測沸騰危機的餘量(即偏離核沸騰比,DNBR)。這項研究成果或將應用於冷卻計算機芯片和核反應堆。目前,該研究已經發表於《Applied Physics Letters》。
* 【英國研究人員使用一種創新方法來「逆轉」與年齡有關的記憶衰退】
英國研究人員的一項新研究提出了一種創新的方法來治療與年齡有關的記憶衰退。臨床前研究顯示,通過「操縱」大腦中被稱為神經元周圍基質網絡(PNNs)的結構組成,可以逆轉衰老小鼠的記憶衰退。
* 【中國科學家利用簡單的 RNA 微調讓馬鈴薯和水稻產量提高 50%】
北京大學的研究小組將一種叫做 FTO 的單一基因插入到馬鈴薯和水稻植株中。由此產生的植物是更有效的光合作用者,這意味著它們長得更大,產量也更高 —— 在實驗室中產量提高了 3 倍,在田間產量提高了 50%。它們還能長出更長的根系,這有助於它們更好地忍受乾旱。
* 【歐盟提出一攬子應對氣候變化方案】
歐盟委員會近日提出應對氣候變化的一攬子計劃提案,旨在實現到 2030 年歐盟溫室氣體淨排放量與 1990 年的水平相比至少減少 55%,進而到 2050 年實現碳中和的目標。這份提案涉及交通、能源、建築、農業和稅收政策等諸多領域,具體內容包括收緊現有碳排放交易體系,增加可再生能源的使用,提高能源效率,盡快推出低碳運輸方式及相關配套基礎設施和燃料,制定與脫碳目標相一致的稅收政策等。
* 時間晶體即將誕生?當地時間 7 月 28 日,谷歌在一篇預印本論文中表示,其首次使用 「懸鈴木」 (Sycamore)量子計算機創造出了 「真正的時間晶體」。
參與該研究的科學家超過 80 人,分別來自Stanford 大學、普林斯頓大學、MIT 和德國德累斯頓馬普固體化學物理學研究所(德累斯頓)等科研院所,論文標題為《在量子處理器上觀測時間晶體的本徵態序》(Observation of Time-Crystalline Eigenstate Order on a Quantum Processor )。
* 【新分子圖譜揭示腦細胞發育軌跡】
瑞士洛桑聯邦理工學院(EPFL)和瑞典卡羅林斯卡學院的研究人員首次繪制了胚胎大腦細胞在成熟過程中遵循的遺傳和發育軌跡。這份分子圖譜不僅可幫助人們識別與神經發育狀況有關的基因,確定腦癌中惡性細胞的來源,還可以作為評估實驗室中乾細胞產生的腦組織的參考,同時能改進神經退行性疾病的細胞替代療法。相關研究發表在近日的《自然》雜誌上。
* 【液體填充光纖設計可實現更可靠的數據傳輸】
瑞士 Empa 研究所的研究人員開發了一種光纖,該光纖由連續的液體甘油芯和透明含氟聚合物護套組成。這種光纖以光脈衝的形式傳輸數據的能力跟固體塑料光纖差不多,另外它還擁有更高的抗拉強度。
光量子 芯片 在 Eddie Tam 譚新強 Facebook 的最佳解答
譚新強:Galileo的教誨:人類非宇宙中心點
文章日期:2021年5月21日
【明報專訊】人類非常自以為是,一切以自己為中心的動物。自古以來,不止大部分人都以為大地是平或者是方的,他們更以為天上的星星、月亮和太陽,都是圍繞着我們而運轉的。當伽利略(Galileo Galilei)以望遠鏡觀察得來科學證據,支持哥白尼(Nicolaus Copernicus)的太陽中心論,他就被教廷批鬥和逼害了20多年之久。
即使現代人也有同樣自以為是的主觀願望。不少人偏見地以為近數十的所謂新發明,例如互聯網、手機、AI、機械人和加密貨幣等,都必然是人類史上最偉大和最重要發明。更有不少人甚至相信所謂加速回報定律(Law of Accelerating Returns),認為重要科技發明的速度不斷提升,很快就將達到人網合一的所謂「奇點」(Singularity)!
客觀點來看,這些科技發展雖重要,尤其互聯網和手機,令到日常生活更方便和豐富,但怎可能比火、蒸氣機、電力、電話、汽車和飛機等更重要?有人曾問過李光耀,什麼是偉大發明?他的答案是對新加坡而言,最重要的發明是空調!他認為在熱帶地區,如沒有空調,工作效率非常低,經濟發展必更困難。你可能以為李光耀此言是開玩笑,小小一台冷氣機,怎可能那麼偉大?但事實擺在眼前,新加坡是熱帶國家中,極少數(差不多唯一)能達到發達國家水平的國家之一,成功原素當然不止空調這麼簡單,但他立國不久即決定盡快在所有政府辦公室裝置空調,肯定對提升政府效率有極大幫助。
近20年科技無助提升生產效率
若以生產效率的趨勢來判斷近20年科技發展的成效和重要性,不幸客觀結論就必然是頗為失望,甚至驚訝。因為不論美國或中國,過去20年的勞動生產率(labour productivity)增長都不斷放緩(見圖1及圖2),就如數以萬億美元計的IT投資,每人手中一台超級電腦,都提升不了我們的生產效率。更不需遑論AI結合機械人,再加5G,所有工廠都應變得更自動化,需要的工人極少,理論上人均生產效率必定急速提升。
這麼多「超偉大」發明,怎去解釋生產效率增長率不加速反放緩的重大謎團?我認為可探討3個可能性。
(1)從1970年代開始,個人電腦(PC)開始崛起和普及,企業投入大量資源,期望生產力效率大幅提升。但長近20年的投資期,效果一直是失望的,在互聯網普及前,大部分電腦幾乎可算是獨立的,主要用途只包括文書處理(word processing)、電子試算表(spreadsheet)和簡單資料庫(database)等,即使有通訊功能,也只限於速度極慢、撥號連線的modem。在這個單打獨鬥的環境下,大部分PC亦是一台昂貴的高級打字機,對生產力提升當然有限。後來隨着互聯網崛起、寬頻普及,企業開始看得到大量投資IT的回報。當然互聯網的發展,提供了創立大量新企業的機會(但即使如此,上世紀七十年代至今的生產力增長也一直放緩)。
同一道理,過去30年的新科技發展,將有重新提升生產力效率的一天,可能只是時辰未到。我贊同有此可能性,但到底現代科技,缺乏什麼催化劑,防止它們完全體現潛能?我也沒有準確答案,部分可能是投放的量未足夠,例如5G,大家一直期待網絡速度馬上提升10倍以上至Gbps級別,但事實上在美國和中國的用戶體驗極差,平均速度提升50%不到,某些情况和地區,甚至比4G更慢,亦較受障礙物如牆壁阻礙接收。應用方面更缺乏「killer apps」,據說在中國的流行5G App是Speedtest,就是用來測試通訊速度!現時平均每個基站服務約7000用户,當然寄望繼續增加密度,到了某個水平,希望能較成功體現5G功能。除此,高頻率的mmWave網絡仍在起步階段,高頻率才可真正大幅提升速度,但不幸物理上,mmWave穿透力更差,要實現IoT夢想,實時遙控高速機器,進行精細手術和應用於交通系統等,仍面對極大挑戰。
(2)人均生產效率增長放緩,有可能是定義和數據準確度的問題。會否是不可以金錢來量度近代科技發展所帶來的所有好處,除經濟增長外,亦有助改善人類健康、延長壽命,以及提升快樂感?有可能,事實上在過去200多年,全球人類壽命的確上升很多,從不到30歲升至現在的70多歲;但大部分應該是公共衛生的改善,尤其自來水的普及,農業進步導致營養改良,以及接生技術和環境改善,大幅減低嬰兒夭折率等,而非來自先進癌症治療法或基因工程技術。當然,近年英美的平均壽命更出現下跌趨勢。快樂的定義更抽象,跟科技發展更沒有一個必然關係,去多幾次日本就一定開心啲?著名人類學家Steven Pinker認為,原始的hunter-gatherers,以狩獵為生,不用花太多時間工作和計劃生活,平均快樂度反而比生活較穩定和富庶的農業社會高很多。原因是農業需要長達一年的工作計劃、播種、灌溉、收割和儲糧等等,全年忙碌,亦需全年憂慮天氣和瘟疫等。現代人更惨,不止需要計劃一年,未上幼稚園,已需要開始計劃人生,每年每月每日都有無窮無盡的所謂工作、責任和煩惱。
有人企圖解釋,可能分母也有問題。人均生產力增長減速,或者是因為現代經濟高度自動化,需要工作的人愈來愈少,即是失業,underemployment和不需工作的人愈來愈多,所以人均生產效率就被拉低了。這個解釋有兩個問題,首先在這次COVID大流行前,以美國為例,失業率跌至3.5%的50年新低,何來工作人數在減少?近月隨着美國疫情減退,失業率又再急速下降,所以此論點不成立。
有人指出,雖然表面失業率低,但有不少人不再尋找長工,只做點「零工」(gig),或只領救濟,所以人均生產效率被拉低。我沒有深入研究過,但我懷疑近年underemployment的情况,是否真的比以前嚴重。我的印象是從前較以農業為重的社會,鄉下的「閒人」更多,城市化才是提升人均生產力的最重要元素。
總括來說,我承認經濟數據未必能夠完全反映科技進步對人類的影響,但仍不可以此為解釋生產效率增長放緩的藉口。
人類發展漸近兩科學極限
(3)我認為最重要的解釋是人類發展已逐漸走近兩個科學上的極限。第一個是地球資源所能提供的可延續發展極限。人類發展,從古至今,尤其從工業革命開始,都可說是建築在耗用地球資源身上,尤其倚賴化石能源,最初是最髒的煤炭,後來是更好用但更有限的石油,再加上較清潔但難儲存運輸的天然氣。近年我們當然開始發現化石能源的碳排放,帶來嚴重氣候變化問題,如不能在極有限時間內解決,足可導致一次全球大規模動植物滅絕災難!
樂觀來看,這個危機當然也提供很多發展再生能源、電動車輛(electric vehicle, EV)、儲能、碳捕獲(carbon capture),以至「地球工程」(geoengineering)技術的機會。但不能否認的是地球本身是個充滿有機化學(organic chemistry)的環境,最方便的能源必然是與炭相關的,石油的能源密度是任何電池技術的20倍以上。按《巴黎氣候協議》的計劃,人類必須在2050年前達到碳中和,談何容易?去年因疫情,全球碳排放確下降了約6.5%,接近但仍不到每年遞減7%的目標,今年美、中等經濟重開,有可能達標嗎?
另一個更根本的是物理的極限。歷史上最偉大的科學突破,毫無疑問是二十世紀初,愛恩斯坦的狹義和廣義相對論,和稍後由玻爾(Niels Bohr)、海森堡(Werner Heisenberg)和薛丁格(Erwin Schrodinger)等人所發展的量子力學(quantum mechanics)。兩套理論非常偉大,亦有極大實用性,核能和核武正是它們的結合,是禍是福,見仁見智。但不幸過去60年,理論物理已可說碰到了堅硬牆壁,相對論與量子力學有非常根本性,甚至哲學性矛盾,聰明如愛恩斯坦,窮人生最後30年努力,也無法解決此問題。後人想出很多充滿創意的理論,例如超弦理論(Superstring Theory),但全都是紙上談兵,毫無實驗證明,所以於事無補。
物理極限對應用科技和經濟發展有很大影響。整個IT革命都是由半導體技術進步所推進。最有名的摩爾定律(Moore's Law),雖並非一條真正永恒不變的物理定律,但在過去50年,一直是芯片發展的一個指標。事實是每一代的芯片發展,雖仍在進步,但速度早已放緩,最初摩爾定律預期每9至I2個月,芯片密度即可翻一倍,近年已放緩至兩年以上。強如過去的老大英特爾(Intel),已停滯於14nm兩年以上,只有台積電和三星能繼續推前,能成功生產7nm芯片。即使台積電等能如期做到2nm,無疑必將接近物理極限,再縮小必將帶出各種量子世界的奇怪現象如「穿隧效應」(tunneling effect),極難控制芯片性能。
在應用層面上,影響也必極大。單是AI無人駕駛,已是個極重要的科技夢想,亦是Tesla股價的一個重要支柱。馬斯克(Elon Musk)教主是個頂級銷售員,他一直不斷告訴「信徒」無人駕駛是個相對簡單的ANI(Artificial Narrow Intelligence)應用,只需GPU或ASIC夠快,加上視覺數據,必可在短期內成功。按馬斯克的說法,年輕一代不需要學駕駛汽車,法律甚至將禁止人類開車,所有汽車變成AI無人駕駛的EV。
無人駕駛為極複雜AI難題
事實上,無人駕駛是個極複雜的AI難題,最近連馬斯克開始承認困難比原先想像中高很多。不止Tesla,大部分其他公司都碰到同樣問題,不少甚至已放棄。Uber和Lyft都計劃出售無人駕駛部門,Alphabet的Waymo,近日CEO和CFO等多位高層相繼辭職。德國各大汽車廠近日都推出質量非常不錯的EV,但並無太多AI功能。
我一向認為無人駕駛沒那麼簡單,應屬於AGI(Artificial General Intelligence)問題,即需要所謂common sense。人腦當然遠比電腦慢,但複雜度遠比芯片高,人腦neurons(神經元)數量超過1000億,synapses(突觸)數量更超過125萬億,更加是三維物體,連形狀和組織都對人腦的思考、性格和整個意識(conciousness)非常關鍵,遠比現時最先進二維為主,7nm GPU的540億原子粒多和複雜。即使未來用到2nm技術,能做出人類common sense的機會仍很低。不少AI專家認為,AGI需要whole brain simulation,或甚至不可以矽為基礎原料,改以用所謂wet ware,不知是否想以基因工程技術,在試管中培植出一個以碳為基礎原料的有機AI系統?聽起來,比Frankenstein(科學怪人)更恐怖!
我沒有答案,只想提醒大家不要過度自以為是,人類始終是渺小的,我們對宇宙的認知非常有限!
(中環資產擁有Tesla、Uber、Alphabet、台積電及三星財務權益)
中環資產投資行政總裁
[譚新強 中環新譚]
https://www.mpfinance.com/fin/columnist3.php?col=1463481132098
光量子 芯片 在 Facebook 的最讚貼文
【BBC中文網】芯片之戰:堪比「太空技術大戰」的科技競爭關鍵點是什麼?
芯片(晶片)是當下這個時代許多重要科技產品的核心。沒有芯片,世界各地的汽車廠就將停產。 現在,製造芯片的技術被美國視為與中國進行貿易戰的關鍵武器。
在芯片技術的競逐上,哪方能贏得這場人工智能競賽,決定在誰能製造出最先進的芯片。
當前芯片短缺的原因
從美國的福特和通用汽車,英國的本田車廠再到中國的電動汽車製造商蔚來(Nio),這些大廠都因為汽車芯片短缺,不得不削減汽車產量。
到底發生了什麼導致這種後果?
也許新冠大流行是罪魁禍首,它讓我們之前關於於芯片生產的所有預測顯得過時了。
首先,對小裝置小設備的需求出現暴增。以前需要好幾年才會進化的數字化轉變,現在幾個星期內就發生了。
全球半導體協會(World Semiconductor Association)執行長謝爾頓(Jodi Shelton)告訴BBC:「多年來,我們一直在討論如何運用5G,網路和雲端在家工作。現在突然變成了現實。」
因為新冠疫情,汽車銷量下滑,汽車業高層取消了汽車芯片訂單。但是,隨後意外的銷售反彈讓車廠以及芯片商措手不及。
謝爾頓稱,那些以及時化供應鏈方式製造汽車的廠商,與半導體芯片廠商因此就有了矛盾。因為芯片生產,不是像打開或關閉水龍頭那樣簡單。
「他們(車廠)將不得不了解,那樣並非芯片的生產模式。芯片不是能馬上就有的現成產品。」
誰在製造最好的芯片?
芯片短缺也使得一件事變得很清楚:世上不再只有一種芯片產品。
因為,隨著需求改變,半導體行業也有了變化。
過去數十年來,英特爾憑借銷售口號『Intel Inside』成為許多人心中唯一的芯片製造商。
但是,情況不再如此。
研究公司「自由移動電台」(Free Mobile Radio)的分析師理查·溫沙(Richard Windsor)說,芯片世界已經改變了。
他概述了兩種趨勢:使用芯片進行數據存儲,以及圖形芯片(GPU)的重要性日益升高,這不僅讓線上游戲栩栩如生,而且在人工智能應用中也至關重要。
溫沙指出了這個行業中的新超級巨擘,尤其是台灣公司台積電(TSMC)。
他解釋說:「在目前的時間點,台積電是全球排名第一的高端矽芯片製造商。」
建立芯片廠,或眾所周知的芯片代工廠(foundries)是一項非常昂貴的生意。溫沙告訴BBC,用最先進的設備,去開一家的新的芯片代工廠可能要花上250億美元。
製造芯片的機器又是哪裏來的呢?
他又提到一家叫艾司摩爾(ASML)的公司。這是全球首屈一指的芯片光刻機製造商,其產品能像印刷機一樣製造出芯片。
BBC去年就曾經報導過這家「相對默默無聞的荷蘭公司」。
儘管並非家喻戶曉,但該公司市值卻高達1840億歐元(約合2200億美元)。
而且,艾司摩爾對自己所屬的角色十分滿意,還將這段話打印在員工的衣服上——該公司的研發副總班斯左(Jos Benschop)說:「我們製造了木匠用來建造你的房屋所需的工具。」
他又解釋了台積電(TSMC),英特爾(Intel)和三星(Samsung)之類的公司如何需要他們生產的設備。該公司於1984年成立時,在芯片光刻(lithography)市場上有10家大型公司。現在,全球僅剩一個。
「隨著相關技術的掌握越來越難,所需的投資也越來越大,那麼優勝劣汰就開始了。越來越少的公司能夠跟上。」他解釋。
但是,這也意味著艾司摩爾陷入了美中貿易戰。
之前特朗普曾對荷蘭政府施加壓力,要求艾司摩爾停止向中國客戶出售技術。這也似乎奏效了,相關設備被運送到中國的時間延遲了。
美中貿易戰
隨著美中兩國陷入人工智能領域的龐大爭奪戰,如何獲得或構建最新AI芯片,成為了關鍵武器。
曾經擔任美國前總統小布什( George W. Bush)顧問的瑪格倫(Pippa Malmgren)博士向BBC分析,芯片的賭注與另一場技術大戰「太空競賽」中的賭注一樣高。
「在地緣政治上,新的太空競賽在於提高電腦計算能力。也就是說,誰能搜集到最多的數據,並以最快的速度處理這些數據。這便是為何中美雙方,或者歐盟都在量子技術上大量投入。而電腦,或者說能處理數據速度極快的超級電腦,這些設備都需要芯片。」她解釋說。
台積電(TSMC)總部的所在地台灣,處於這場科技大戰中的前線。鑒於台灣一直有徹底獨立的想法,因此你可能會認為台灣會做任何美國想做的事情。
但是瑪格倫博士警告說,事情並非如此簡單:「中國有巨額投資在台灣。」
「我認為,若你要問台灣經濟能否與中國脫鉤,那麼我的答案是這將是十分困難的。」
摩爾定律還有效嗎?
自1960年代以來,芯片行業一直受摩爾定律的支配。該定律預測,因為技術發展,芯片上能置入的晶體管(transistors)數量,每兩年將翻一倍。
但是,鑒於晶體管現在越做越小,我們可以期望這種模式繼續下去嗎?
我問了威爾遜(Sophie Wilson),1980年代,她在當今世上最受歡迎的芯片Arm設計過程中扮演了關鍵角色。她說摩爾定律中仍可能延續下去,因為半導體行業一直在尋找新方法,將更多的東西塞入更小的空間。
她解釋:「我們已多次抵達路的盡頭。但每次到了盡頭,都會有另外的路出現。」
未來的出路可能是在3D。
「在接下來的幾年中,你將看會到來自3D技術的產品。借著讓越來越多的矽堆疊在一起,我們能夠加大既有的密度空間。矽層十分之薄,所以能將它們疊在一起。」威爾遜說。
此外,別指望中國會退出這場競賽。
由於無法獲得當前最新的芯片設備,中國將繼續投入巨資,研究新方法期望在下一個芯片時代超越美國。
#科技 #國際 #政治 #貿易