機器學習識別特徵阻絕代測 上鏈回送監理資料庫防竄改
人臉辨識加酒精鎖阻酒駕 串區塊鏈上傳比對告警
2021-05-24社團法人台灣E化資安分析管理協會元智大學多媒體安全與影像處理實驗室
本文將介紹酒精防偽人臉影像辨識系統,結合了人臉辨識、酒精鎖以及區塊鏈應用,以解決酒駕問題,並透過監控系統避免代測狀況發生。且利用區塊鏈不可修改的特性,將車輛與人臉資料串上區塊鏈,以確保駕駛人的不可否認性。
長長期以來「酒駕」都是一個很嚴肅且必須被重視的議題,儘管在2019年立法院修法酒駕及拒絕酒測的罰則,但是抱持僥倖心態的人還是數不勝數,導致因酒駕釀成車禍的悲劇還是一再重演,讓不少的家庭因此破滅。
據統計,從2015年到2018年的酒駕取締件數都逾10萬件,而因為酒駕車禍的死亡人數逾百人。在2019年酒駕新制上路以後,2020年警方酒駕取締件數有明顯下降至約6萬件,雖然成功達到嚇阻效果,但是死亡人數仍與去年前年持平,可見離完全遏止酒駕還有很長的路需要努力。
立法院於2018年三讀通過了「道路交通管理處罰條例部分條文修正案」,酒駕者必須重新考照,並且只能駕駛具有酒精鎖(Alcohol Interlock)的車輛,所謂酒精鎖,屬於車輛點火自動鎖定裝置,在汽車發動前必須進行酒測,通過才能將汽車發動,而且在每45分鐘至60分鐘後酒精鎖系統就會要求駕駛人在一定時間內進行重新酒測,以便防範在行車過程中有飲酒的情況發生,若駕駛人未遵守其要求,車子就會強制熄火並鎖死,必須回酒精鎖服務中心才能將鎖解開。
由於法案的方式無法完全遏止酒駕,因此許多創新科技或是企業致力於研究相關科技來解決酒駕的問題。
其中本田(Honda)汽車與日立(Hitachi)公司研發出手持型酒精含量檢測裝置,讓駕駛人必須在駕駛之前都先進行酒測,若酒精濃度超標就會將汽車載具上鎖,藉此避免酒駕意外或事故發生,且該技術結合了智慧鑰匙功能,若偵測到酒測值超標,車輛中的顯示面板將會發出警告訊號告知駕駛人,避免酒駕上路之問題。
另一方面則是解決酒精殘值之問題,因為有許多駕駛人都會認為,休息一下後,身體也無感到不適,即駕車出門,等到駕駛人被警方臨檢時才知道酒測未通過,因此收到罰單,甚至是吊銷駕照處罰等。
根據醫學研究指出,酒精是在人體體內由肝臟代謝,實際代謝時間必須看體質以及飲酒量而定。台灣酒駕防制社會關懷協會建議,喝酒後至少要10至20小時後再駕車比較安全。多數人無具備酒精代謝時間的觀念,導致駕駛人貿然上路,待意外發生或罰單臨頭時,已經為時已晚。
背景知識說明
本文介紹的方法為酒精鎖結合攝影鏡頭進行人臉辨識,並將人臉特徵資料與車輛資料串上區塊鏈,並利用區塊鏈不可篡改的特性,來避免駕駛人在解鎖酒精鎖時發生他人代測的問題。
由於人臉辨識技術具備防偽性、身分驗證的特性,因此將酒精鎖的技術結合人臉辨識,便可確認為駕駛本人。
何謂人臉辨識
人臉辨識技術屬於生物辨識的一種,基於人工智慧、機器學習、深度學習等技術,將大量人臉的資料輸入至電腦中做為模型訓練的素材,讓電腦透過演算法學習人類的面部特徵,藉以歸納其關聯性最後輸出人臉的特徵模型。
目前人臉辨識技術已經遍佈在日常生活之中,其應用面廣泛,最為常見的應用即為智慧型手機的解鎖、行動支付如LINE Pay、Apple Pay等,其他應用還包括行動網路銀行、網路郵局、社區大樓門禁管理系統、企業監控系統、機場出入關、智能ATM、中國天眼系統等。一般來說,人臉辨識皆具備以下幾個特性:
‧ 普遍性:屬於任何人皆擁有的特徵。
‧ 唯一性:除本人以外,其他人不具相同的特徵。
‧ 永續性:特徵不易隨著短時間有大幅的改變。
‧ 方便性:人臉辨識容易實施,設備容易取得,如相機鏡頭。
‧ 非接觸性:不須直接接觸儀器,也可以進行辨識,這部分考量到衛生問題以及辨識速度。
人臉辨識透過人臉特徵的分析比對進行身分的驗證,別於其他生物辨識如虹膜辨識、指紋辨識,無須近距離接觸,也可以精準地辨識身分,且具有同時辨識多人的能力。因應新冠肺炎疫情肆虐全球,人臉辨識技術也被用來管理人來人往的人流。人臉辨識的儀器可以搭配紅外線攝影機來測量人體體溫,在門禁進出管制系統中,利於提高管理效率,有效掌握到進出人員的身分,以及幫助衛生福利部在做疫調時更容易掌握到確診病患行經的足跡。
人臉辨識的步驟
人臉辨識的過程與步驟,包括人臉偵測、人臉校正、人臉特徵值的摘取,進行機器學習與深度學習、輸出人臉模型,從影像中先尋找目標人臉,偵測到目標後會將人臉進行預處理、灰階化、校正,並摘取特徵值,接著人臉資料交給電腦進行機器學習與深度學習運算,最後輸出已訓練好的模型。相關辨識的步驟,如圖1所示。
人臉偵測
基於Haar臉部檢測器的基本思想,對於一個一般的正臉而言,眼睛周圍的亮度較前額與臉頰暗、嘴巴比臉頰暗等其他明顯特徵。基於這樣的模式進行數千、數萬次的訓練,所訓練出的人臉模型,其訓練時間可能為幾個小時甚至幾天到幾周不等。利用已經訓練好的Haar人臉特徵模型,可以有效地在影像中偵測到人臉。
Python中的Dilb函式庫提供了訓練好的人臉模型,可以偵測出人臉的68個特徵點,包括臉的輪廓、眉毛、眼睛、鼻子、嘴巴。基於這些特徵點的資料就能夠進行人臉偵測,如圖2~4所示。圖中左上角的部分是偵測到的分數,若分數越高,代表該張影像就越可能是人臉,右側括弧中的編號代表子偵測器的編號,代表人臉的方向,其中0為正面、1為左側、2為右側。
人臉的預處理
偵測到人臉後,要針對圖片進行預處理。通常訓練的影像與攝影鏡頭拍出來的照片會有很大的不同,尤其會受到燈光、角度、表情等影響,為了改善這類問題,必須對圖片進行預處理以減少這類的問題,其中訓練的資料集也很重要:
‧ 幾何變換與裁剪:將影像中的人臉對齊與校正,將影像中不重要的部分進行裁切,並旋轉人臉,並使眼睛保持水平。
‧ 針對人臉的兩側用直方圖均衡化:可以增強影像中的對比度,可以改善過曝的影像或是曝光不足的問題,更有效地顯示與取得人臉目標的特徵點。
‧ 影像平滑化:影像在傳遞的過程中若受到通道、劣質取樣系統或是受到其他干擾導致影像變得粗糙,藉由使用圖形平滑處理,可以減少影像中的鋸齒效應和雜訊。
人臉特徵摘取
關於人臉特徵摘取,相關的技術說明如下:
‧ 歐式距離:人臉辨識是一個監督式學習,利用建立好的人臉模型,將測試資料和訓練資料進行匹配,最直觀的方式就是利用歐式距離來計算所有測試資料與訓練資料之間的距離,選擇差距最小者的影像作為辨識結果。由於人臉資料過於複雜,且需要大量的訓練集資料與測試集資料,會導致計算量過大,使辨識的速度過於緩慢,因此需要透過主成分分析法(Principal Components Analysis,PCA)來解決此問題。
‧ 主成分分析法:主成分分析法為統計學中的方法,目的是將大量且複雜的人臉資料進行降維,只保留影像中的主成分,即為影像中的關鍵像素,以在維持精確度的前提下加快辨識的速度。先將原本的二維影像資料每列資料減掉平均值,並計算協方差矩陣且取得特徵值與特徵向量,接著將訓練集與測試集的資料進行降維,讓新的像素矩陣中只保留主成分,最後則將降維後的測試資料與訓練資料做匹配,選擇距離最近者為辨識的結果。由於影像資料經過了降維的步驟,因此人臉辨識的速度將會大幅度地提升。
‧ 卷積神經網路:卷積神經網路(Convolutional Neural Network,CNN)是一種神經網路的架構,在影像辨識、人臉辨識至自駕車領域中都被廣泛運用,是深度學習(Deep Learning)中重要的一部分。主要的目的是透過濾波器對影像進行卷積、池化運算,藉此來提取圖片的特徵,並進行分類、辨識、訓練模型等作業。在人臉辨識的應用中,首先會輸入人臉的影像,再透過CNN從影像提取像素特徵並轉換成特定形式輸出,並用輸出的資料集進行訓練、辨識等等。
何謂酒精鎖
酒精鎖(圖5)是一種裝置在車輛載體中的配備,讓駕駛人必須在汽車發動前進行酒測,通過後才能將車輛發動。且每隔45分鐘至60分鐘會發出要求,讓駕駛人在時間內再次進行檢測。
根據歐盟經驗,提高罰款金額以及吊銷駕照只有在短期實施有效,只有勸阻的效果,若在執法上不夠嚴謹,被吊照者會轉變成無照駕駛,因此防止酒駕最有效的方法就是強制讓駕駛人無法上路,這就是「酒精鎖」的設計精神。
在本國2020年3月1日起酒駕新制通過後,針對酒駕犯有了更明確且更嚴厲的規定,在酒駕被吊銷駕照者重考後,一年內車輛要裝酒精鎖,未通過酒測者無法啟動,且必須上15小時的教育訓練才能重考,若酒駕累犯三次,要接受酒癮評估治療滿一年、十二次才能重考。
許多民眾對於「酒精鎖」議論紛紛,懷疑是否會發生找其他人代吹酒精鎖的疑慮,為防範此問題,酒精鎖在啟動後的五分鐘內重新進行吹氣,且汽車在行駛期間的每45至60分鐘內,便會隨機要求駕駛重新進行酒測,如果沒有通過測量或是沒有測量,整合在汽車智慧顯示面板的酒精鎖便會發出警告,並勸告駕駛停止駕車。
對於酒精鎖的實施,目前無法完全普及到每一台車子,而且對於沒有飲酒習慣的民眾而言,根本是多此一舉,反而增加不少麻煩給駕駛。若還有每45~60分鐘的隨機檢測,會導致多輛汽車必須臨時停靠路邊進行檢測,可能加劇汽車違規停車的發生頻率。
認識區塊鏈
區塊鏈技術是一種不依賴於第三方,透過分散式節點(Peer to Peer,P2P)來進行網路數據的存儲、交易與驗證的技術方法。本質上就是一個去中心化的資料庫,任何人在任何時間都可以依照相同的技術標準將訊息打包成區塊並串上區塊鏈,而這些被串上區塊鏈的區塊無法再被更改。區塊鏈技術主要依靠了密碼學與HASH來保護訊息安全,也是賦予區塊鏈技術具有高安全性、不可篡改性以及去中心化的關鍵。區塊鏈相關概念,如圖6所示。
區塊鏈的原理與特性
可以將區塊鏈想像成是一個大型公開帳本,網路上的每個節點都擁有完整的帳本備份,當產生一筆交易時,會將這筆交易廣播到各個節點,而每個節點會將未驗證的交易HASH值收集至區塊內。接著,每個節點進行工作量證明,選取計算最快的節點進行這些交易的驗證,完成後會把區塊廣播給到其他節點,其他節點會再度確認區塊中包含的交易是否有效,驗證過後才會接受區塊並串上區塊鏈,此時就無法再將資料進行篡改。
關於區塊鏈的特性,可分成以下四部分做說明:
1. 去中心化:區塊鏈其中一個最重要的核心宗旨,就是「去中心化」,區塊鏈採用分散式的點對點傳輸,該概念架構中,節點與節點之中沒有所謂的中心,所有的操作都部署在分散式的節點中,而無須部署在中心化機構的伺服器,一筆交易或資料的傳輸不再需要第三方的介入,因此又可以說每個節點就是所謂的「中心」。這樣的結構也加強了區塊鏈的穩定性,不會因為其中的部分節點故障而癱瘓整個區塊鏈的結構。
2. 不可篡改性:透過密碼學與雜湊函數的運用來將資料打包成區塊並上鏈,所有區塊都有屬於它的時間戳記,並依照時間順序排序,而所有節點的帳本資料中又記錄了完整的歷史內容,讓區塊鏈無法進行更改或是更改成本很高,因此使區塊鏈具備「不可篡改性」,並且同時確保了資料的完整性、安全性以及真實性。
3. 可追溯性:區塊鏈是一種鏈式的資料結構,鏈上的訊息區塊依照時間的順序環環相扣,這便使得區塊鏈具有可追溯的特性。可追本溯源的特性適用在廣泛的領域中,如供應鏈、版權保護、醫療、學歷認證等。區塊鏈就如同記帳帳本一般,每筆交易記錄著時間和訊息內容,若要進行資料的更改,則會視為一筆新的交易,且舊的紀錄仍會存在無法更動,因此仍可依照過去的交易事件進行追溯。
4. 匿名性:在去中心化的結構下,節點與節點之間不分主從關係,且每個節點中都擁有一本完整的帳本,因此區塊鏈系統是公開透明的。此時,個人資料與訊息內容的隱私就非常重要,區塊鏈技術運用了HASH運算、非對稱式加密與數位簽章等其他密碼學技術,讓節點資料在完全開放的情況下,也能保護隱私以及用戶的匿名性。
區塊鏈與酒精鎖
由於區塊鏈的技術具備去中心化、記錄時間以及不可篡改的特性,且更加強酒精鎖的檢測需要身分驗證的保證性。當進行酒精鎖檢測解鎖時,系統記錄駕駛人吹氣時間以及車輛的相關資訊,還有人臉特徵資料打包成區塊並串上區塊鏈。因此,在同一時間當監控系統偵測到當前駕駛人與吹氣人不同時,此時區塊鏈中所記錄的資料便能成為一個強而有力的依據,同時也能讓其他的違規或違法事件可以更容易進行追溯。
酒駕防偽人臉辨識系統介紹
為了解決酒精鎖發生駕駛人代測的問題,酒精鎖產品應導入具有身分驗證性的人臉辨識技術。酒駕防偽人臉辨識系統即為駕駛人在進行酒精鎖解鎖時,要同時進行人臉辨識,來確保駕駛人與吹氣人為同一人。
在駕駛座前方的位置會安裝攝影鏡頭,作為駕駛的監控裝置。進行酒測吹氣的人臉資料將會輸入到該系統中的資料庫儲存,並將人臉資料以及酒測的時間戳記打包成區塊串上區塊鏈,當汽車已經駛動時,攝影鏡頭將會將當前駕駛人畫面傳回系統進行人臉比對驗證。如果驗證成功,會將通過的紀錄與時間戳一同上傳至區塊鏈,若是系統偵測到駕駛人與吹氣人為不同對象,系統將發出警示要求駕駛停車並重新進行檢測,並同時將此次異常的情況進行記錄上傳到區塊鏈中。
如果駕駛持續不遵循系統指示仍持續行駛,該系統會將區塊鏈的紀錄傳送回給開罰的相關單位,並同時發出警報以告知附近用路人該車輛處於異常情況,應先行迴避。且該車輛於熄火後,酒精鎖會將車輛上鎖,必須聯絡酒精鎖廠商或酒精鎖服務中心才能解鎖。相關的系統概念流程圖,如圖7所示。
區塊鏈打包上鏈模擬
在進行酒測解鎖完畢以及進行人臉資料儲存後,會透過CNN將影像轉換輸出成128維的特徵向量作為人臉資料的測量值,接著將128個人臉特徵向量資料取出,並隨著車輛資訊一起打包到同一個區塊,然後串上區塊鏈。取出的人臉特徵資料,如圖8所示。
要打包成區塊和上鏈的內容,包括了人臉特徵資料、車牌號碼、酒測解鎖時間點等相關輔助資料,接著透過雜湊函數將相關的資料打包成區塊。以車牌號碼ABC-1234為例,圖9顯示將車輛資料和人臉資料進行區塊鏈的打包,並進行HASH運算。
將人臉資料和車輛相關資料作為一次的交易內容,並打包區塊,經過HASH後的結果如圖10所示,其中prev_hash屬性代表鏈結串列指向前一筆資料,由於這是實作模擬情境,並無上一筆資料,其中messages屬性代表內容數,一筆代表車牌資料,另一筆則為人臉資料。time屬性則代表區塊上鏈的時間點,代表車輛解鎖的時間點。
情境演練說明
話說小禛是一間企業的上班族,平時以開車為上下班的交通工具,他的汽車配置了酒駕防偽影像辨識系統,以下模擬小禛下班後準備開車的情境。
已經下班的小禛今天打算從公司開車回家,當小禛上車準備發動車子時,他必須先拿起安裝在車上的酒測器進行吹氣,並將臉對準攝影鏡頭讓系統取得小禛的人臉影像。小禛在汽車發動前的人臉影像,如圖11所示。
待攝影鏡頭偵測到小禛的人臉後,接著系統便會擷取臉上五官的68個特徵點,如圖12所示。然後,相關數據再透過CNN轉換輸出成128維的特徵向量作為人臉資料的測量值,如圖13所示。
酒精鎖通過解鎖後,車輛隨之發動,解鎖成功的時間點將會記錄成時間戳記,隨著影像與相關資料串上區塊鏈。在行駛途中,設置在駕駛座前方的鏡頭將擷取目前駕駛的人臉,以取得駕駛人的128維人臉特徵向量測量值,並且與汽車發動前所存入的人臉資料進行比對,藉以判斷目前的駕駛人與剛才的吹氣人臉是否為同一位駕駛。當驗證通過後,也會再將通過的紀錄與時間戳上傳至區塊鏈中,如此一來,區塊鏈的訊息內容便完整記載了這一次駕車的紀錄,檢測通過的示意圖如圖14所示。
系統通過辨識後,便確認了駕駛人的身分與吹氣人一致。且透過時戳的紀錄和區塊鏈的輔助,也確保了駕駛的不可否認性。若有其他違規事件發生時,區塊鏈的紀錄便成為一個強而有力的依據來進行追溯。
如此一來,便可以預防小禛喝酒卻找其他人代吹酒測器的情況發生。在駕駛的途中,如果有需要更換駕駛人,必須待車輛靜止時,從車載系統發出更換駕駛要求,再重新進行酒測以及重複上述流程,才可以更換駕駛人。如果沒有按照該流程更換駕駛,系統將視為異常情況。
結語
酒駕一直是全球性的問題,將有高機率導致重大交通事故,造成人員傷亡、家庭破碎,進而醞釀後續更多的社會問題,皆是酒駕所引發的不良效益。為了解決酒駕的問題,各個國家都有不同的酒駕標準或是法律規範,但是大部分國家的規範和制度都只有嚇阻作用卻無法完全遏止。在不同的國家防止酒駕的方式不盡相同,有的國家如新加坡,透過監禁及鞭刑來遏止酒駕犯,又或者是薩爾瓦多,當發現酒駕直接判定死刑,這樣的制度雖嚇阻力極強,但是若讓其他國家也跟進,會造成違憲或是違反人權等問題。因此,各國都在酒駕的問題方面紛紛投入研究,想要達到零酒駕的社會。
為達成此理想,本文介紹了基於區塊鏈的酒駕防偽辨識系統,利用酒精鎖搭配人臉辨識技術以及區塊鏈技術,使有飲酒的駕駛人無法發動汽車。且該系統搭載在行車電腦中,結合攝影鏡頭的監控對駕駛進行酒測防制管理,將人臉資料、酒精鎖、解鎖時間點與相關資訊打包成區塊並上鏈。基於區塊鏈技術內容的不易篡改,可加強駕駛人的不可否認性,當汽車發生異常情況時,便能利用有效且可靠的依據進行追溯。人工智慧和物聯網時代已經來臨,透過酒駕防偽辨識系統來改善酒駕問題,在未來能夠普及並結合法規,智慧汽車以及智慧科技的應用將會帶給人們更安全、更便利的社會。
附圖:圖1 人臉辨識的步驟。
圖2 人臉特徵點偵測(正臉)。
圖3 人臉特徵點偵測(左側臉)。
圖4 人臉特徵點偵測(右側臉)。
圖5 酒精鎖。 (圖片來源:https://commons.wikimedia.org/wiki/File:Guardian_Interlock_AMS2000_1.jpg with Author: Rsheram)
圖6 區塊鏈分散式節點的概念圖。
圖7 系統概念流程圖。
圖8 取出人臉128維特徵向量。
圖9 儲存車輛相關資料及人臉資料到區塊。
圖10 HASH後及打包成區塊的結果。
圖11 汽車發動前小禛的人臉影像。
圖12 小禛的人臉影像特徵點。
圖13 小禛的人臉特徵向量資料。
圖14 系統通過酒測檢測者與駕駛人為同一人。
資料來源:https://www.netadmin.com.tw/netadmin/zh-tw/technology/CC690F49163E4AAF9FD0E88A157C7B9D
內輪差示意圖 在 Facebook 的最讚貼文
[Keep your friends close, and your enemies closer] 留意時間。台蘋唔出紙版,東方報得仲快過蘋果自己!果然日夜mon 實。你的敵人比你更了解你!
TLDR:媒體撚人包。其實邊有得做?紙媒冇人睇事少,但網媒嘅記者一樣會走佬。Why join the Navy when you can be pirate?
==============
月頭訂最抵!2021比別人知得多。subscribe now(https://bityl.co/4Y0h)。Ivan Patreon,港美市場評點,專題號外,每日一圖,好文推介。每星期6篇,月費80,半年已1600人訂! 畀年費仲有85折
==============
1. 又,我在香港每日買三份實體報紙(不包括蘋果,但有網上訂)。在台灣都係同一習慣:分別係 台灣蘋果,聯合報,中國時報(請屌)
2. 台蘋賣到20蚊台幣,台灣人叫晒救命。但你諗下香港報紙賣10蚊,而兩地人工差距往往唔止一個開(雖然有時不能咁計啦,你去台灣「喝茶」唔會香港一半價錢)。況且,台灣報紙少好多嘢睇,香港報紙厚好多。而反正後來蘋果有 凍新聞 有埋啲鹹濕示意圖(圖or 老母嗰啲), 台灣人都好受落的。
3. 反而你聯合報 中國時報10蚊台幣一份,我就只係見過阿叔會買,同埋我(都係阿叔)
4. 咁反正大家都知,報紙靠賣紙就死得,印一份蝕一份,都係靠廣告。所以又難怪台灣報紙少嘢睇。
5. 咁講完量,我地最好唔好講質添。蘋果aside,台灣報紙啲質素真係得啖笑。直接啲講,啲記者質素真係笑能死人。相比之下香港啲記者真係十分專業。
6. 咁我唔怕開名,我仲做台灣公司時,有一劑我阿頭(台灣佬)彈咗個台灣經濟日報女記者嚟訪問我。咁當然係唔靚嘅阿嬋啦,唔使咁多性幻想。咁但,唏,訪問嘛唔係叫你去夜總會選妃,尊重下人地專業好。 好呀,睇下有幾撚專業?
7. 佢問埋啲嘢低能,算數。夾硬將自己啲話迫落我度要我認同(我諗起《三國無双》嘅林雪:「你同唔同意?」)。好正常。但我最不能忍受嘅係,佢老味佢拎個Excel 叫我幫佢填(即係你報紙會見到,由美術出嗰啲圖,例如咩內銀業績比較,香港樓價每月轉變之類嗰啲)。
8. 我十分婉轉地,轉達個意思畀佢:仆你個街,我出埋你份糧丫不如(雖然我都唔多恨)。
9. 咁呀台嬸都好婉轉咁(唏台灣人嘛,台灣最美的風景便是人)話我知,唏,唔填咪唔填咯,唔使咁惡,香港人真係冇禮貌。
10. 其實由第一分鐘我都唔想理佢,但老細踢落嚟,我又唔知會唔會係老細啲情婦之類。但心諗老細都讀過下書 又四四正正,應該啲品味冇咁差。於是直接同老細講,喂,個阿嬋廢架喎。咁老細都至少表面支持我,仲email串咗個阿嬋幾句。「會唔會返摩鐵跪坡璃我就唔知啦」
11. 事實,以上現象人人皆知,死症,你推我我推你。但總之,讀者唔肯畀錢(似乎讀者又話啲報紙垃圾),報紙根本請唔到啲正常嘅人。請到嘅,當然都係靠廣告商養。咁所以七八成嘅文都係「業配文」。而反正讀者又係照睇。而根本好多記者係自己跑埋業務跑埋廣告嘅,呃埋一大堆化妝品呀 嘢食呀 戲飛呀大有人在。
12. 咁反正讀者又冇乜所謂,新一代一早WFC,老一代都WFC。我都係當睇廣告雜誌,睇下邊度有新餐廳咁。或者同時睇下啲台灣人嘅各式怪論。最Q記得嗰時體育版真係日撚日都係兩版甚至四版林書豪。係每一日,every 北京 single day.就算佢冇波打甚至傷咗,都有其他花邊新聞。由佢老母到佢老校,乜都有得講。
13. Anyway,都係必然之路了。其實蘋果(一仔 in general)已經好勁,好似有百幾兩百萬付費訂戶。想話你知,國際上都冇幾多份報紙有咁數量,Financial Times都得100萬人咋!咩Economist 嗰啲 50萬人左右。New York Times咪有700萬人咯,但人地仲平過蘋果。
14. 全部面對嘅問題,唔止係咩紙媒已死(樓上嘅都全部變晒網上科水訂)。而係,你稍為有啲食力嘅記者,自己楝支旗開檔,自媒體算數啦。真的,一大堆都搞SubStack 搞 Patreon。讀者係睇篇文嘛,唔係睇你New York Times個嘜頭。人人自媒體,碎片化啦,分眾傳媒
15. 我係記者做得好做得幾年有人脈嘅,使乜靠你份糧?自己搞個Newsletter啦.仲要聽你班中文打字都唔識嘅冷氣房老屎忽教我點點點 然後自己出去飯局應酬指點江山?
16. 你以前媒體嘅玩法,綑縛嘛。你問老啲嘅傳媒人都知,專欄副刊,甚至再以前金庸寫武俠小說,可以賣好多紙。問題係,我明明就買明報睇 陶傑 伊沙貝,以前就屈你睇埋林燕妮張小嫻, 而家我直接課金畀陶傑咪得 (當然又會令個社會更加圍爐,但後話)
17. 我個Patreon都類似係Newsletter,基本上人人都知,係想學/抄 Matt Levine嘅,當然我唔係記者。
18. 有機會寫(但N咁多篇文我都冇寫),Substack而家直頭玩到唔止Newsletter,直頭做Sections(https://bityl.co/6q2s). 即係我成份嘢上又得,你散叫亦得。我搞個小企鵝出版同盟,叫利世民 嚟寫政治經濟,叫高山道 嚟寫體育,叫尹思哲 嚟寫Start Up,然後叫我寫….. 「是但啦」。一樣得。唔使輪流寫喎,又唔係Patreon bundling一齊寫。而係任你全餐或散叫都得。喂,咁即係直頭等於自己搞一份報紙啦喎! 你諗下以前係幾咁難?而家?真係一晚就搞到。「而呢個正係我一路叫利世民搞嘅嘢」「佢之前都搞過啲類似嘅嘢,行得太早,而家Substack幾個掣搞掂啦」
19. 都係有啲廢,但成日講啲乜tech 物tech,好多行業同十年廿年前仲係差不多。反而媒體先係轉得最勁嘅。
20. 而我話你知,好多人係Substack都未撚聽過。網友至撚醒。
21. 係呀,離晒題呀。但唔係咁嘅題點呃到你入嚟?我出篇文寫「媒體生態分析」你會唔會入嚟睇?點解媒體變標題黨?因為讀者鍾意咯。咁當然我唔係特登嘅,我都唔係咁計算嘅人,但寫下寫下,咪自然去咗第樣嘢。
22. Last but not least,in case 有人問,背景當然係小朋友相。但唔係我嘅小朋友。朋友嘅相啫。而我電話係off notification的,人生美滿之路。
==============
月頭訂最抵!2021比別人知得多。subscribe now(https://bityl.co/4Y0h)。Ivan Patreon,港美市場評點,專題號外,每日一圖,好文推介。每星期6篇,月費80,半年已1600人訂! 畀年費仲有85折
==============
內輪差示意圖 在 報時光UDNtime Facebook 的最佳貼文
【1975年哈雷機車隊取締飛車黨】#以快制快
如何取締橫行的飆車少年?
答案是比他更快
1975年臺北市哈雷機車隊
網羅哈雷與BMW重機
以極速160~200KM 的實力
有效「肅清」西門飛車騎士
飆車族大概是心服口服了
#照片應該是示意圖
#報導讀起來像武俠小說
#報時光UDNtime
日期:1975/11/12
圖說:台北市警察局保安大隊機車分隊,又名哈雷機車隊,
徹底改善市區交通秩序。
攝影:聯合報 龍啟文
歷史新聞
【1975-11-13/聯合報/06版/第六版】
取締飛車黨‧已經有效果
警方想出許多辦法‧十幾天取締廿一件 新訂處罰條款很重‧奉勸騎士安份守法
【本報記者 梅瓊安】台北市西門鬧區的「飛車黨」已經肅清的差不多了,這是市警局哈雷機車隊澈底改善市區交通秩序以來的第一個豐碩成果。
哈雷機車隊的正式名稱,是台北市警察局保安大隊機車分隊,這個分隊最為外界熟知的任務是為來訪的國賓開道,目前更成為「飛車黨徒」的剋星,台北市的機車肇事問題幾乎已使市民們到了「人人自危」的程度,但是維持台北交通秩序的警員們更把「飛車黨」看成都市交通之「癌」。
一個星期以前的中華路,每天深夜幾乎都有一些留著披頭長髮的「飛車勇士」,騎著拔掉消音器的重型機車,呼嘯而過,弄得居民們夜不安眠,更危害了夜歸市民的交通安全。台北市警察局長酈俊厚在十一月一日,命令所屬保安大隊機車分隊,限期肅清市區內的飛車黨徒。
酈局長將此一任務交給機車分隊是有原因的:該分隊目前擁有時速兩百公里以上的哈雷機車廿三輛,和時速一百六十公里以上的BMW機車廿八輛,比國內的任何車輛速度都快,更重要的是該分隊的卅一位隊員,個個駕駛技術優異身手矯健,可以發揮高度的機動力。
機車分隊的分隊長潘岳受命後,立刻派出十餘位資深隊員,到飛車黨經常出沒的地區執行掃蕩,以汲取取締經驗,同時將隊員以四人兩車為單位編成一組,來提高隊員們的工作熱誠和榮譽感。
已在該隊服務三年的林照坤表示:台北市飛車黨經常在林森北路二段,北新公路,興隆路,華江橋下的和平西路和萬大路一帶出沒;該組從一日深夜執行掃蕩任務以來,一共辦了廿一件;其中以在延平北路的涼州街口取締了六件為最多,違規人的年齡大都為十八、九歲。
哈雷機車偵防小組的隊員們,在執行取締時,曾研究了各種飛車黨的「特技」,其中以張阿章最有心得,幾乎每一種「特技」都會;因此經常擔任隊員們訓練時的「假想敵」。
張阿章說:所謂「特技」,說穿了一點也不值錢,獨輪著地行駛和原地向後轉,只不過是利用油門和剎車的控制;至於蛇行更不值得一談,只是運用慣性作用罷了;年輕人為此玩命真划不來。
他認為飛車黨最不可原諒的是:把公路當做私產,舉行「特技比賽」;這種比賽有兩種方式,一種是四輛機車圍著兩輛機車「護駕」,另一種則是四輛車在後「押陣」;別的車輛都得讓路,否則就可能被他們逼到路旁拖下車揍一頓;比賽的項目則為看誰獨輪行駛的時間久,或者速度快等。
張金昌頭一次獨自行動時,被一個「飛車黨」,使出一招「原地向後轉」,跑掉了;回到隊上就苦思對策,想出一招「中國功夫」破解了此招,以後執勤時,他將違規機車逼到路旁,坐在後面的隊員立刻以「跳箱」法,撲上違規的駕駛人,目前此招「中國功夫」已成為哈雷機車隊的制式動作,「原地向後轉」逃跑方式,已經失靈了;這就是所謂「魔高一尺,道高一丈」。
該分隊的楊進丁巡佐,特別要求隊員在執行任務時,應該注意違規人的安全,更應該注意其他車輛和路人的安全;因為如果為了逮捕違規人,而發生傷亡,警方人員是要負相當法律責任的,這也是他們執行任務時遭遇的最大困擾。
據楊巡佐說:目前被取締的飛車黨徒,大都依違警罰法第五十六條第十一款和第六十一條第一款,妨害安寧秩序和妨害交通等處罰,可拘留三日,量罰似嫌太輕。
他說:即將公佈實施的修正「交通管理處罰款例」第四十三條規定:機車在路上超速,蛇行或後輪著地行駛,處三百元以上,六千元以下罰款,因而肇事者吊銷駕駛執照,實行後,或可產生更大的嚇阻作用。
哈雷機車隊並呼籲市民,如果發現飛車黨,可即以電話通知該隊取締,以徹底消滅害人害己的「飛車黨」。
內輪差示意圖 在 大貨車轉彎的時候,所有車輪的軌跡的圓心會共點嗎 的推薦與評價
內輪差 的原理我了解,其實不只大貨車,四輪小轎車也有內輪差,注意看第一張四輪圖就會發現前輪到圓心的半徑比後輪長,所以後輪在轉彎的時候因為半徑較 ... ... <看更多>
內輪差示意圖 在 [ 168 交通安全] 內輪差宣導短片 - YouTube 的推薦與評價
168交通安全入口網http://168.motc.gov.tw 關心您。大客車交通安全、大客車交通意外、國道意外、酒駕車禍、 超速、車禍意外、車禍現場、蛇行、道路 ... ... <看更多>
內輪差示意圖 在 和運租車好運粉絲團, profile picture 的推薦與評價
... 軸距越長(即車身越長)、轉向角度越大,其內輪差也隨之變大, ... 會出現內輪差,即內側後輪會向內側偏移(如下所附大、小型車內輪差示意圖), ... ... <看更多>