#抗疫也抗癌 #癌症頭號殺手💪💪
🔺除了新冠肺炎,也來關心 #肺腺癌 最新研究突破!🔺
#非編碼基因PTTG3P #加速肺腺癌細胞生長
⭐肺癌是全球及臺灣癌症十大死因之首,肺腺癌患者逐年增加。中研院生醫所周玉山研究員、施柔合博士後研究員組成的研究團隊發現,肺腺癌組織裡的非編碼核糖核酸「PTTG3P」表現愈高,會 #加速癌細胞成長,在小鼠實驗中也證實會 #降低存活率。
若將PTTG3P表現量減少一半,腫瘤生成速度明顯減緩,顯著提升小鼠存活率。
#此發現有助於化療用藥參考
⭐團隊也首次發現,肺腺癌化療病人癌組織裡面的PTTG3P表現越高,對於臨床化療藥物(順鉑和紫杉醇)產生抗藥性,使得治療效果打折扣。
建議化療用藥前,可先檢視患者癌組織裡的PTTG3P表現量,有助於提高療效,延長病人生命。
────────────
#PTTG3P #垃圾基因 #肺腺癌細胞增生兇手
第一作者施柔合表示,在人體細胞的核糖核酸中, 僅1/3可以轉譯出蛋白質執行生物功能;絕大部分的核糖核酸無此功能,被稱為非編碼核糖核酸 (noncoding RNAs, ncRNAs),過去被定義為「垃圾基因」。
近幾年來,科學家發現ncRNAs在疾病惡化及生物細胞學中扮演重要角色。研究團隊藉由與基因共舞(co-expression)原理及生物資訊分析,建構基因共同表現網路,找到6個ncRNAs與肺腺癌存活率相關,以 #PTTG3P表現最為顯著。
💡此方法對於如何有效率、有系統地找到與疾病相關的ncRNAs,提供一大助力。
周玉山指出,過去研究已知,肺腺癌細胞增生與下游調控的BUB1B基因表現有關,本次發現的「PTTG3P」就像黑幫老大,唆使其他小弟一同犯罪:「PTTG3P」和轉錄因子「FOXM1」交互作用,活化「BUB1B」的基因表現,三者像是合組「#犯罪者聯盟」,成為 #支援肺腺癌腫瘤成長的共犯結構。😈😈😈
────────────
Postdoctoral researcher Dr. Jou-Ho Shih, in Dr. Yuh-Shan Jou’s research team at the Institute of Biomedical Sciences of Academia Sinica, who got her ph.D. degree in Genome and Systems Biology program at National Taiwan University/Academia Sinica, provided the systematic analysis for studying the biological functions and their following mechanisms of prognostic ncRNAs in lung adenocarcinoma (LUAD).
Six prognostic ncRNAs and their associated co-expression gene networks were identified for functional prediction as prognostic markers of LUAD. Among them, one prognostic ncRNA, pituitary tumor transforming gene 3 pseudogene (PTTG3P), is prioritized to explore its detailed pathological functions and mechanisms owing to its upregulation in LUAD consistently associated with poor prognosis in multiple cohorts of LUAD patients.
────────────
📌本研究已於108年12月19日刊登在《核酸研究》(Nucleic Acids Research)。論文全文:https://academic.oup.com/…/…/doi/10.1093/nar/gkz1149/5680706
📌〈肺腺癌研究新突破!非編碼基因讓癌細胞長更快〉
https://www.sinica.edu.tw/ch/news/6492
📌〈Integrated analysis for predicting prognosis and pathological mechanisms of noncoding RNAs in cancers: up-regulation of PTTG3P is associated with poor prognosis and chemoresistance in lung adenocarcinoma〉
https://www.sinica.edu.tw/en/news/6492
────────────
📌媒體報導
[自由時報] 中研院團隊 研究新發現》「垃圾基因」會加速肺腺癌增生
https://news.ltn.com.tw/news/life/paper/1353423
[中央廣播電台] 中研院發現肺腺癌中的致命基因 宛如犯罪者聯盟
https://www.rti.org.tw/news/view/id/2052326
[公共電視] 肺腺癌最新研究 找出癌細胞生長關鍵
https://www.youtube.com/watch?v=77QxJQCuEg8
同時也有31部Youtube影片,追蹤數超過23萬的網紅Lice萊斯,也在其Youtube影片中提到,《魔物獵人物語2》在7月9號隆重登場,原本對魔物獵人IP也還好,對JRPG還有點排斥的我,沒想到在短短的一個禮拜裡面,就玩了差不多快一百個小時。這款遊戲迷人的地方在哪邊,為什麼會玩那麼久,這口味適合大眾嗎?就跟大家分享一下根本不是受眾的我,為什麼沉迷那麼久。 ----- 【各種社交平台】 最近DI...
垃圾基因 在 中央研究院 Academia Sinica Facebook 的最佳解答
#抗疫也抗癌 #癌症頭號殺手💪💪
🔺除了新冠肺炎,也來關心 #肺腺癌 最新研究突破!🔺
#非編碼基因PTTG3P #加速肺腺癌細胞生長
⭐肺癌是全球及臺灣癌症十大死因之首,肺腺癌患者逐年增加。中研院生醫所周玉山研究員、施柔合博士後研究員組成的研究團隊發現,肺腺癌組織裡的非編碼核糖核酸「PTTG3P」表現愈高,會 #加速癌細胞成長,在小鼠實驗中也證實會 #降低存活率。
若將PTTG3P表現量減少一半,腫瘤生成速度明顯減緩,顯著提升小鼠存活率。
#此發現有助於化療用藥參考
⭐團隊也首次發現,肺腺癌化療病人癌組織裡面的PTTG3P表現越高,對於臨床化療藥物(順鉑和紫杉醇)產生抗藥性,使得治療效果打折扣。
建議化療用藥前,可先檢視患者癌組織裡的PTTG3P表現量,有助於提高療效,延長病人生命。
────────────
#PTTG3P #垃圾基因 #肺腺癌細胞增生兇手
第一作者施柔合表示,在人體細胞的核糖核酸中, 僅1/3可以轉譯出蛋白質執行生物功能;絕大部分的核糖核酸無此功能,被稱為非編碼核糖核酸 (noncoding RNAs, ncRNAs),過去被定義為「垃圾基因」。
近幾年來,科學家發現ncRNAs在疾病惡化及生物細胞學中扮演重要角色。研究團隊藉由與基因共舞(co-expression)原理及生物資訊分析,建構基因共同表現網路,找到6個ncRNAs與肺腺癌存活率相關,以 #PTTG3P表現最為顯著。
💡此方法對於如何有效率、有系統地找到與疾病相關的ncRNAs,提供一大助力。
周玉山指出,過去研究已知,肺腺癌細胞增生與下游調控的BUB1B基因表現有關,本次發現的「PTTG3P」就像黑幫老大,唆使其他小弟一同犯罪:「PTTG3P」和轉錄因子「FOXM1」交互作用,活化「BUB1B」的基因表現,三者像是合組「#犯罪者聯盟」,成為 #支援肺腺癌腫瘤成長的共犯結構。😈😈😈
────────────
Postdoctoral researcher Dr. Jou-Ho Shih, in Dr. Yuh-Shan Jou’s research team at the Institute of Biomedical Sciences of Academia Sinica, who got her ph.D. degree in Genome and Systems Biology program at National Taiwan University/Academia Sinica, provided the systematic analysis for studying the biological functions and their following mechanisms of prognostic ncRNAs in lung adenocarcinoma (LUAD).
Six prognostic ncRNAs and their associated co-expression gene networks were identified for functional prediction as prognostic markers of LUAD. Among them, one prognostic ncRNA, pituitary tumor transforming gene 3 pseudogene (PTTG3P), is prioritized to explore its detailed pathological functions and mechanisms owing to its upregulation in LUAD consistently associated with poor prognosis in multiple cohorts of LUAD patients.
────────────
📌本研究已於108年12月19日刊登在《核酸研究》(Nucleic Acids Research)。論文全文:https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkz1149/5680706
📌〈肺腺癌研究新突破!非編碼基因讓癌細胞長更快〉
https://www.sinica.edu.tw/ch/news/6492
📌〈Integrated analysis for predicting prognosis and pathological mechanisms of noncoding RNAs in cancers: up-regulation of PTTG3P is associated with poor prognosis and chemoresistance in lung adenocarcinoma〉
https://www.sinica.edu.tw/en/news/6492
────────────
📌媒體報導
[自由時報] 中研院團隊 研究新發現》「垃圾基因」會加速肺腺癌增生
https://news.ltn.com.tw/news/life/paper/1353423
[中央廣播電台] 中研院發現肺腺癌中的致命基因 宛如犯罪者聯盟
https://www.rti.org.tw/news/view/id/2052326
[公共電視] 肺腺癌最新研究 找出癌細胞生長關鍵
https://www.youtube.com/watch?v=77QxJQCuEg8
垃圾基因 在 Lice萊斯 Youtube 的最佳貼文
《魔物獵人物語2》在7月9號隆重登場,原本對魔物獵人IP也還好,對JRPG還有點排斥的我,沒想到在短短的一個禮拜裡面,就玩了差不多快一百個小時。這款遊戲迷人的地方在哪邊,為什麼會玩那麼久,這口味適合大眾嗎?就跟大家分享一下根本不是受眾的我,為什麼沉迷那麼久。
-----
【各種社交平台】
最近DISCORD有起色:https://discord.gg/JCNbErN
Twitch 實況:http://www.twitch.tv/lice0424
臉書粉絲團:https://www.facebook.com/Lice0424/
-----
【# 特賣推薦影片】
Steam特賣不知道要買甚麼?遊戲荒沒遊戲玩?看這邊!
✈https://www.youtube.com/playlist?list=PLpVkxO-KqEaButYz52MMXQIvYygzOsy2M
-----
【播放清單推薦】
【實況日常&精華】:https://goo.gl/f6zVMu
【萊斯垃圾話】:https://goo.gl/GJyNP8
【萊斯聊Game】:https://goo.gl/RXus2
-----
【工作人員名單】
腳本 Script : Lice
拍攝 Cameraman : Lice
後製 Editor : Lice
封面 Cover : Lice、維尼
#魔物獵人 #聊Game #魔物獵人物語2
垃圾基因 在 朱學恒的阿宅萬事通事務所 Youtube 的最佳貼文
原始直播影片播出時間:20210624 https://youtu.be/PY342UgLZ20
高端疫苗其實就是對武漢病毒做的
那它做的比較AZ的那個抗體
是對加州變種病毒做的
可是我們現在已經是英國啦
已經是印度啦 以後可能南非啦都來啦
還有巴西、秘魯都可能來
所以這些東西你都沒辦法做給我們怎麼辦
我怎麼認為你是有效的
加上curevac這個疫苗再一出來
你看到沒有它的原因很大一宗就是變種病毒
變種病毒它沒辦法覆蓋
所以當然我們就不會相信
你這個用免疫橋接
還要能夠說服老百姓去用這個疫苗算了吧不可能
那我就再問了
就是如果現在坊間謠傳是疫苗審議委員會
都已經被偷天換日換成了大部分是支持免疫橋接的學者或是專家
我可不可以問一下
以王醫師的了解
目前台灣到底什麼學派會支持免疫橋接
我先不要罵他們
我們就假設這是一個中立也不說他是異端邪說
到底是哪些人會支持免疫橋接
就是官方派的嘛 國師派的
國師派是免疫橋接的一個創始者也是他提出來的
他提出為高端疫苗去解套的就是用免疫橋接
所以他的那些子弟兵就現在全部都進到了FDA去了
就我們藥物審議委員會裡面進去了
進去就是為了審議這個東西
你看看裡面有16個委員
只有3個委員沒有公開表態說支持免疫橋接
只有3個喔
那3個可能悶著不講話的喔
所以我認為這個免疫橋接要通過它的EUA的話
全員通過的
網友插播他問說王理事長這次科興對付Delta好像不太行
讓對岸防疫專家很是擔心到底有沒有這一回事情
科興啊科興它這個疫苗
基本上是滅活的
那這個東西它假如說對Delta不行
可以預期的是一定會有不行的疫苗會出現
因為我們知道病毒的變種
一定是跳出它的疫苗沒問題
所以現在檯面上所有的疫苗對Delta效果都減低
包括科興在內
可是我們要看的不是看它降低
這個降低是必然
我們要看它有沒有能夠從這裡面戰勝的空間
就是二代疫苗
二代疫苗以科興來講那太簡單了
它就換了個Delta病毒就來了
就變成二代疫苗就出來了對不對
那mRNA的疫苗也簡單了嘛
我換那個mRNA換進去就可以
我信使核糖核酸換了
那個AZ疫苗腺病毒載體把載體那個DNA換掉就結了嘛
所以它們這些疫苗都有能夠再變成二代疫苗的
演進到二代疫苗的空間
只有我們的次單位疫苗沒有辦法
因為它要把基因拿出來以後
要找到哪個基因是對的
這個基因要合成蛋白
蛋白還要加進去
蛋白的純化過程中又非常麻煩
有些化學反應為了防止它變性弄了很多的化學反應
那可複雜了
所以你就看到這一次為什麼次單位疫苗搞了那麼久
才出來了一個Novavax就是這個道理
這樣子我就比較了解了
因為像譬如說mRNA
messenger RNA的疫苗
就是我去換那個messenger
我在裡面換子彈打下去就ok
那滅活疫苗就反正我找另外一株Delta病毒把它弄死
然後再打進去這也ok
所以反而是Second generation次世代的更新裡面
反而我們的這個蛋白質類型疫苗
Novavax這個系列的疫苗要更換到第二代反而難度高
要擷取之後重新培養然後再來打
反而比較困難 對沒有錯
所以這個疫苗是應變最差的一個疫苗
我們現在看起來病毒非常的可怕
這個病毒是每半年就變一次
它跟流感不一樣 流感是一年變一次
它半年就變一次
所以可能疫苗半年就得弄一次
弄一次的話
你假如說是按照現在這麼樣的生產程序出來
你怎麼應變
根本沒有辦法應變 你想變都變不了
所以說我說現在這個次單位疫苗
可能現在都是沒用
以後也沒有發展空間
所以這個疫苗根本就該丟到垃圾桶裡面去
這個疫苗沒有用的嘛對不對
你沒有發展空間我要你幹什麼
你頂多這一次騙一次錢而已
你說造福我們台灣人民一次那也罷
可是你不是
你根本就是騙一次錢騙完就走
但我不禁想要追問一下
所以信使核糖核酸
然後像腺病毒或者是滅活疫苗
未來有沒有可能做成多價 多價的疫苗
也就是像我們現在肺炎鏈球菌什麼13價23價
以後我就一次打5價
這個祕魯Delta然後B117然後南非種
就5價通通打進去這個有沒有可能
可能 非常可能
它這怎麼做咧 用5支病毒拿下去一起攪嘛
都拿下去攪 它5個mRNA一起放進去嘛
這都可以啊
這個都可以做的 沒問題
所以它們那些都有變成多價疫苗的空間
也有變成說你單價疫苗的空間
都有可以替換都可以
就是我們的次蛋白疫苗沒有辦法
王理事長剛剛講了一個我很震撼
我也是今天第一次聽到
擴充性原來是次蛋白疫苗最差
那搞屁啊 一個要流感化的病毒
你不能夠upgrade 不能夠擴充
這個沒有用啊
垃圾基因 在 Today is my day Youtube 的精選貼文
#小編沒收工 #熱門話題十分鐘
訂閱《Today is my day》https://bit.ly/2Stnp1A
追蹤小編IG https://www.instagram.com/et_newsman/
主持人:Ashley、鉄雄、蔡西
主題:印度變種病毒Delta入侵台灣,起源是祕魯返台的一對祖孫,在屏東被確診,基因序列證實,傳播鏈導致計程車司機、鄰居等友人中鏢,網友很擔心南部撐不撐得住?陰謀論四起,讓縣長潘孟安也震怒回嗆:嘴砲請閃一邊。
收聽完整版小編沒收工
搜尋訂閱★Today is my day
《Apple Podcast》: https://apple.co/3ibJl8F
《Spotify》:https://spoti.fi/34aNBAj
《SoundOn》:https://sndn.link/todayismyday
《KKBOX》:https://bit.ly/3dxHIBE
《Google Podcast》:https://bit.ly/2Hcjwsd
垃圾基因 在 《零距離科學》 - 基因新發現(上) - Facebook 的推薦與評價
到目前為止,人類DNA只有2%被科學家序列同分析過,其餘98%嘅DNA一直被稱為「 垃圾 」。 近年愈來愈多研究發現,人類某啲「特異功能」,例如有啲人可以長時間徒手潛水, ... ... <看更多>
垃圾基因 在 人類的基因中98%都是垃圾?染色體丟失,改造DNA的幕後 ... 的推薦與評價
雖然人類壹直在追逐著對宏觀宇宙和星辰大海的探索,但也從未放棄過對體內微觀世界的窺視。隨著對DNA遺傳 基因 學,越來越深入的了解,越來越多的科學家 ... ... <看更多>