每個月會幫孩子做一次紀錄,月底要到了!上個月的債還沒清,一早趕快拉她們去量身高、體重!看著上面的身高記號,要7y的加妹終於只跟當時的安姐差1cm,小學前對比姊姊的紀錄,一直是5cm身高差,甚至曾經一度在95cm前卡關!
現在的人習慣用手機拍照,曾經在數位相機📷爆發的年代,我也想過照片就放在記憶卡裡就好,不然洗出來多貴(二專那年全班去✈️義瑞德🇮🇹🇨🇭🇩🇪海外參訪),我揹著腳架帶了一堆底片,同學們迫不及待的在米蘭、瑞士血拼!而我卻狂拍了17卷底片,雖然拍照技巧沒有很厲害!但就是想捕捉這裡的美,畢竟那是我第二次出國,也是目前最遠的一次,用自己飯店實習和暑期高中母校夏令營教學弟妹存來的錢(出社會第一筆收入)意義不同!回來洗照片的錢,幾乎跟我在國外額外的花費差不多,當時還把照片攤開供同學加洗照片搞死自己。
直到有一天阿姨問我拍的照片都會如何處理,我說就存卡裡。阿姨說怎麼不洗出來?萬一卡壞了什麼照片都沒了!我才恍然大悟!所以現在都會很習慣把手機的照片拉出來整理,一段時間就會洗一些出來編冊,偶爾孩子們也會拿來翻閱,她們一直對更小時候的她們有記憶,不然我自己小時候的記憶也都僅是照片裡的我居多。
不過最近困擾的一件事就是手機壞了!(也還好平常照片有備份,不然真的欲哭無淚😭),習慣使用安卓系統的手機,在大家推薦蘋果好用的情況下,我換手機了!但沒想到照片、影片不是像以前一樣一拉就出來,一問之下一堆蘋果手機愛用者,沒什麼人在整理照片,(會不會安卓用戶也是?)不然就上雲端有備份就好的概念,這更是讓我崩潰的地方。
現在只能用很笨拙的方式上傳到別的地方再拉出來,也搞不清楚拉出照片後,有沒有將暫存的地方清乾淨,麻煩蘋果🍎前輩有人能幫忙解惑,是否有簡單好用的方法。不過最重要的是,真心希望大家偶爾洗些照片不但自己能留回憶,也算是讓印相產業繼續保留,不然它們都快變黃昏產業了。
#安加奶油的貓頭鷹養成
#相片恆久遠一張永流傳
如何將手機照片傳到雲端 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
把AI導入邊緣裝置就對了!
作者 : Duncan Stewart、Jeff Loucks,Deloitte科技/媒體/電信中心
2020-06-04
邊緣AI晶片可能會嵌入越來越多的消費性裝置,例如高階智慧型手機、平板電腦、智慧揚聲器和可穿戴裝置等。它們還將在多個企業市場中得到應用,例如機器人、攝影機、感測器和其他物聯網裝置...
德勤(Deloitte)預測,2020年,邊緣AI晶片出貨量將超過7.5億顆,銷售金額將達到26億美元,而且邊緣AI晶片的成長速度將遠高於整體晶片市場,估計到到2024年邊緣AI晶片出貨量可能超過15億顆,代表其複合年成長率(CAGR)至少達20%,是整體半導體產業(長期CAGR預測為9%)的兩倍多。
這些邊緣AI晶片可能會嵌入越來越多的消費性裝置,例如高階智慧型手機、平板電腦、智慧揚聲器和可穿戴裝置等。它們還將在多個企業市場中得到應用,例如機器人、攝影機、感測器和其他物聯網裝置。消費性應用邊緣AI晶片市場將遠大於企業應用市場,但成長速度可能會較慢,預計2020年至2024年之間,其CAGR為18%;企業應用邊緣AI晶片市場的成長速度更快,同期CAGR預計為50%。
儘管如此,無論從出貨量還是銷售金額來看,今年消費性裝置應用都將佔據整體邊緣AI晶片市場的90%以上。這些邊緣AI晶片中的絕大部分將應用於高階智慧型手機,佔據目前所有使用中的消費性邊緣AI晶片70%以上。實際上不僅是2020年,在未來幾年,AI晶片的成長將主要由智慧型手機推動。我們相信在今年預期出售的15.6億支智慧型手機中,超過三分之一都可能內含邊緣AI晶片。
由於對處理器的要求非常高,AI運算向來幾乎都在資料中心、企業核心設備或電信邊緣處理器上遠端執行,而不是在終端裝置本地執行;現在,邊緣AI晶片正在改變這一切。它們的實體尺寸更小、相對便宜、功耗更小、產生的熱量也更少,因而可以整合到手持裝置以及非消費性裝置(如機器人)中。
邊緣AI晶片可讓終端裝置能夠在本地執行密集型AI計算,減少甚至消除了將大量資料發送到遠端位置的需求,因此在可用性、速度、資料安全性和隱私性方面益處良多。從隱私和安全性方面來看,在邊緣裝置處理資料顯然更安全;個人資訊不離開手機就不會被攔截或濫用。而當邊緣AI晶片安裝在手機上時,即使未連結網路,它也可以完成所有處理。
當然,並非所有AI運算都必須在本地進行。針對某些應用,例如當裝置上的邊緣AI晶片無法處理太多資料時,將資料發送至遠端AI陣列來處理是適當的、甚至是首選方案。實際上,在大多數情況下,AI將以混合模式完成:一部分在裝置端實現,一部分在雲端實現。具體情況下應該選擇什麼樣的混合方式,要看需要完成的AI處理類型。
智慧型手機邊緣AI經濟學
並非只有智慧型手機使用邊緣AI晶片;其他裝置諸如平板電腦、可穿戴裝置、智慧揚聲器等也會採用AI晶片。短期內,其他裝置對邊緣AI晶片銷售的影響力可能會比智慧型手機小得多,原因若非這類市場沒有什麼成長(如平板電腦),就是這類市場規模太小、無法產生實質性的影響;例如,2020年智慧揚聲器和可穿戴裝置市場總銷售量預計僅1.25億部。不過許多可穿戴裝置和智慧揚聲器都依賴邊緣AI晶片,因此其普及率已經很高。
目前,只有價格最昂貴的智慧型手機(處於價格區間頂部)才可能內置邊緣AI晶片。但是,帶有AI晶片的智慧型手機並不一定要價格昂貴到讓消費者望而卻步。
我們可以對智慧型手機的邊緣AI晶片比例進行合理的估算。目前三星(Samsung)、蘋果(Apple)和華為(Huawei)的手機處理器圖片均顯示出裸片及所有功能特性,因此可以識別出晶片的哪些部分用於哪些功能。例如,三星Exynos 9820晶片的照片顯示,其晶片總面積的大約5%專用於AI處理器,整個應用處理器SoC的成本估計為70.50美元,僅次於顯示器,是手機中第二昂貴的元件,約佔據裝置總物料成本的17%。假設AI部分的成本與裸片上的其他部分一樣,即與所佔裸片面積成正比,那麼Exynos的邊緣AI神經處理單元(NPU)大約佔裸片總成本的5%,相當於每個NPU約3.50美元。
相同的,在蘋果的A12仿生晶片上,專用於機器學習的部分約佔裸片總面積的7%。如果整顆處理器的成本為72美元,邊緣AI部分的成本大約5.10美元。華為麒麟970晶片的成本估計為52.50美元,其中2.1%用於NPU,則這部分成本應為1.10美元(當然,裸片面積並不是衡量晶片總成本中有多少比例屬於AI的唯一方法。據華為表示,麒麟970的NPU包含1.5億個電晶體,佔整體晶片55億個電晶體總數的2.7%;按這樣計算,NPU的成本較高,約1.42美元)。
儘管這裡所提到的成本差別很大,但可以合理假設,NPU的平均成本約為每晶片3.50美元。雖然每顆晶片的價格不高,但考量達到5億支的智慧型手機出貨量(還不包括平板電腦、智慧揚聲器和可穿戴裝置),這仍然是一個很大的市場。
製造商的平均成本為3.50美元,最低可能僅1美元,因此在智慧型手機晶片中添加專用的邊緣AI NPU是很自然的事。按照正常的利潤加價幅度,製造成本增加1美元,對終端消費者而言也僅增加2美元。這意味著即使是價格低於250美元的智慧型手機,也可以享受NPU及其帶來的好處,如更好的攝影機、離線語音助理等,而價格漲幅不到1%。
AI晶片來源:自家生產還是找外部供應商?
生產智慧型手機和其他裝置的廠商取得邊緣AI晶片的方式各不相同,這主要取決於手機機型、甚至是區域市場等因素。有些公司向高通(Qualcomm)和聯發科(MediaTek)等第三方供應商採購應用處理器/數據機晶片,這兩家公司在2018年合計佔據了智慧型手機SoC市場約60%的比例。高通和聯發科提供了一系列不同價位的SoC;儘管並非都包含邊緣AI晶片,高階型號通常都會有,例如高通的Snapdragon 845和855,以及聯發科的Helio P60。
在另一方面,蘋果則完全不使用外部供應商的應用處理器晶片,而是設計並使用自己的處理器SoC,如A11、A12和A13 仿生晶片,所有這些晶片都支援邊緣AI。其他手機製造商如三星和華為則採用混合策略,也就是會從市場上的晶片供應商採購一部分SoC,其餘則使用自家研發的晶片,例如三星的Exynos 9820和華為的麒麟970/980。
兵家必爭的企業與工業應用領域邊緣AI市場
如果在智慧型手機和其他裝置中採用邊緣AI處理器好處多多,那為何不將之導入企業應用呢?事實上邊緣AI處理器已經有一些企業應用案例了,例如某些自主無人機;配備了智慧型手機應用處理器SoC的無人機,能完全在裝置端執行即時導航和避障,無需連結網路。
但是,針對智慧型手機或平板電腦最佳化的晶片並非許多企業或工業應用的正確選擇。如前面所述,智慧型手機SoC的邊緣AI部分僅佔總面積的5%,在總成本中佔據約3.50美元,功耗比整個SoC少大約95%。所以若開發出只有邊緣AI功能(加上其他一些必要功能,例如記憶體)的晶片,它的成本會更低、功耗更少且體積更小,豈不更好?
事實上,已經有這樣的晶片了。據說,有多達50家不同的公司正在開發各種各樣的AI加速晶片。在2019年就已經有獨立的邊緣AI晶片鎖定開發工程師,單價約80美元。而如果達到成千上百萬顆的量產,裝置製造商的採購成本會大幅降低,有些甚至可低至1美元(或是更少),而有些則需要幾十美元。現在,我們以智慧型手機邊緣AI晶片作為參考標準,假設邊緣AI晶片的平均成本約為3.50美元。
除了相對便宜之外,獨立的邊緣AI處理器還具有體積小的優勢,功耗也相對較低,僅為1W到10W之間。相比之下,一個由16顆GPU和兩顆CPU組成的資料中心叢集,雖然性能非常強大,成本將高達40萬美元,而且重量達到350磅、耗電達到10萬W。
利用這類已經問世的晶片,邊緣 AI可以為企業帶來更多新的可能性,尤其是在物聯網應用方面。透過使用邊緣AI晶片,企業可以大幅提升在連網裝置端進行資料分析的能力──不僅是收集資料──並將分析結果轉化為行動,從而避免了將大量資料傳送到雲端帶來的成本、複雜性和安全性挑戰。AI晶片可以幫助解決的問題包括:
資料安全和隱私
無論企業如何謹慎小心地保護資料,只要是收集、儲存並將資料傳送到雲端,都會不可避免地使企業面臨網路安全和隱私威脅;隨著時間推移,因應此一風險變得至關重要。世界各國紛紛訂定個資保護相關法規,消費者也逐漸意識到企業正在收集他們的各種資料,而有80%的消費者表示,他們認為企業沒有盡力保護消費者隱私。諸如智慧揚聲器之類的裝置開始在醫院等場合廣泛使用,這些場合對患者隱私的管理十分嚴格。
邊緣AI晶片可在本地處理大量資料,降低個人或企業資料被攔截或濫用的可能性。例如,具有機器學習處理能力的保全攝影機可以透過分析視訊來確定其中哪些部分相關,並只將這部分視訊傳送至雲端,從而降低隱私權洩露的風險。機器學習晶片還可以識別更廣泛的語音指令,從而減少需要在雲端進行分析的音訊。準確的語音辨識功能則有助於智慧揚聲器更精準識別「喚醒詞」,以避免聽到不相關的對話。
連網困難
裝置必須連網才能在雲端處理資料,但是在某些情況下,裝置連網是不切實際的。無人機就是一個例子,其運作位置可能使得維持其連網很困難,而且連網功能本身以及將資料上傳到雲端都會縮短電池壽命。在澳洲新南威爾斯(New South Wales, Australia)以配備嵌入式機器學習功能的無人機巡邏海灘,確保泳客安全;這些無人機不必連結網路就可以識別出被海浪捲走的泳客,或者警告泳客有鯊魚和鱷魚襲擊危險。
(太)大數據
物聯網裝置會生成大量數據。舉例來說,一架Airbus A-350噴射機配備6,000多個感測器,每日飛行航程會產生的數據量達到2.5 TB。在全球範圍內,保全攝影機每天生成的數據約2,500PB。將所有這些數據資料發送到雲端儲存和分析的成本高昂且複雜,將機器學習處理器放置於感測器或攝影機等終端裝置就可以解決這個難題。例如,可以在攝影機中配備視覺處理單元(VPU),也就是一種專用於分析或預處理數位影像的低功耗處理器SoC。借助嵌入式邊緣AI晶片,裝置可以即時分析資料,只有當相關資料需要傳送到雲端進一步分析時才會需要進行傳輸,這可大幅降低儲存和頻寬成本。
功耗限制
低功耗的機器學習晶片甚至可以讓AI運算在透過小型電池供電的裝置上執行,不會消耗過多電力。例如,Arm晶片可以嵌入呼吸器來分析資料,包括吸入肺活量和進入肺部的藥物流量。在呼吸器上完成的AI分析結果將傳送至智慧型手機應用程式,協助醫事專業人員為哮喘患者提供個人化醫療照護。
除了現在已有的低功耗邊緣AI NPU外,很多公司還致力於開發「微型機器學習」方案,也就是在微控制器單元之類的元件上實現深度學習。例如Google正在開發能讓微控制器分析資料的專用版本TensorFlow Lite,將需要發送到晶片外的資料壓縮為只有幾個位元組大小。
低延遲需求
無論是透過有線網路還是無線網路,在遠端資料中心執行AI運算都意味著往返延遲的存在,最佳情況下為1到2 毫秒(ms),最差情況則達到幾十甚至幾百毫秒。使用邊緣AI晶片在裝置端執行AI,可以將延遲降低到奈秒(nanoseconds)等級──這對於需要收集、處理資料並即刻採取行動的應用場景至關重要。
例如自動駕駛車輛必須透過電腦視覺系統收集並處理大量資料以識別物體,同時收集和處理來自感測器的資料以控制車輛各種功能;然後它們必須立即根據這些資料做出決策,像是何時轉彎、煞車或加速,以實現安全行車。為此,自動駕駛車輛必須自己處理在車輛中收集的大量數據。低延遲對機器人應用也很重要;隨著機器人逐漸出現在工廠環境並開始與人類協同工作,低延遲將變得越來越重要。
邊緣AI在大量數據應用至關重要
邊緣AI晶片的普及可能會為消費者和企業帶來重大變化。對消費者而言,邊緣AI晶片可以實現多種功能,從解鎖手機到與語音助理對話,甚至在極端困難的條件下拍攝出令人驚歎的照片,而這些應用都不需要連結網際網路。
但從長遠來看,邊緣AI晶片對企業應用的影響可能更大,它們將把企業的物聯網應用提升到一個全新的境界。由AI晶片驅動的智慧裝置將有助於擴展現有市場,衝擊現有企業,同時改變製造、建築、物流、農業和能源等產業的利潤分配。
收集、詮釋並立即根據大量數據資料採取行動的能力,對於那些仰賴大數據的應用至關重要;未來學家們預測,這類應用將被廣泛佈署,包括視訊監控、虛擬實境、自動駕駛無人機和車輛等等,而邊緣AI晶片就是讓各種裝置取得更高智慧的主角。
附圖:圖1:AI運算技術能佈署在不同位置。
(圖片來源:Deloitte Insights)
圖2:邊緣AI晶片市場規模預測。
(圖片來源: Deloitte Insights)
圖3:三星Exynos 9820的裸晶照片顯示,其中約有5%的面積為AI處理器。
(圖片來源:ChipRebel;注釋:AnandTech)
圖4:蘋果的A12仿生晶片約有7%的面積屬於機器學習的部分。
(圖片來源:TechInsights / AnandTech)
資料來源:https://www.eettaiwan.com/20200604putting-ai-into-the-edge-is-a-no-brainer-heres-why/?fbclid=IwAR3hRYuquNfTq5VzcEWYfqyJotBLBSp4PzLNyMackrs6V43r9NEMhRZ3Ap8
如何將手機照片傳到雲端 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
能跨越「AI 障礙」的邊緣運算:影響範圍小至紅綠燈,大至太空探測器!
Posted on2019/06/18
藍立晴
隨著物聯網(IoT)不斷擴展,在「萬物連網」時代中,生成的資料也會急遽增加,這種轉變也將產生新的需求,例如即時分析與處理資料的能力,因此「邊緣運算」(edge computing)變得至關重要。
究竟什麼是邊緣運算?它將如何影響我們的未來生活呢?
LeapMind,這是日本東京一家新創公司的名字,其使命是讓深度學習普及於邊緣裝置,也就是把 AI 帶進我們日常生活中的各種裝置中,這不只包括電腦、手機,連紅綠燈、安全攝影機等裝置都能應用 AI。
LeapMind 的目標,是透過讓深度神經網路學習元件變「小」的方式,使深度學習可以應用到任何環境裡、讓 AI 在小型計算環境也得以應用, 甚至在「太空」中也能幫上忙。
「日本 NASA」應用邊緣運算打造智慧攝影機
《彭博社》(Bloomberg)舉例,自 1985 年日本首次發射 太空探測器 以來,這些照片都是以相對低技術的方式拍攝的,將相機對準宇宙中的物體,不管拍攝到什麼,都傳回到地球上,並由人類從這些素材中挑選出最美麗的鏡頭。然而, 這種作法相當耗費寶貴的頻寬以及電池。
因此,日本 NASA--宇宙航空研究開発機構(JAXA)正在試驗一種更具辨別能力的智慧攝影機, 它能決定哪些照片有最好的光線、角度與組成,並且只傳回這些照片。
在強大的大型電腦上使用 AI 並沒有什麼大不了,但對於有嚴重能源限制的小型太空飛行器來說,卻是一件相當困難的事情。
LeapMind 開發的技術與解決方案便能在此派上用場。
LeapMind 是一家位於日本東京的邊緣運算新創公司,所謂「邊緣運算」,指的是一種分散式運算的架構,把應用程式、資料資料與服務的運算,由網路中心節點,移往網路邏輯上的邊緣節點進行處理。
由於將原本完全由中心節點處裡的大型服務加以「分解」,加上邊緣節點更接近使用者終端裝置,因此能加快資料處理與傳送速度、減少延遲, 因為不用將所有資料都上傳雲端,資料運輸量大幅降低。
這在處理能力有限甚至沒有網路連線能力的遠端設備上能派上很大的用場,也是將 AI 帶到我們生活各種設備的關鍵。例如:紅綠燈、安全攝影機、各種日常生活中的常見家電,甚至是上文所述的太空探測器中。
將 AI 應用在「生活各處」,邊緣運算新創公司急速成長中
儘管「人工智慧」在現今已非什麼新鮮字眼,但要將 AI 真正「應用」、在生活卻並非一件簡單事。
因為它需要巨量的運算能力與電力,而邊緣運算就是可以使 AI 應用在小型設備或機器中的解決方案,LeapMind 只是眾多邊緣運算公司之中的一個例子。
根據 CB Insights 的統計,去年風險投資中心在邊緣運算領域的新創公司上投資了約 7.5 億美元的資金, 較去(2018)年大幅成長 26%。 值得注意的是,LeapMind 曾在 2017 年獲得了一筆由英特爾(Intel)領投的 1,000 億美元資金。
邊緣運算的應用場景眾多,最初比較廣為人知的應用場景是在自駕車上,但其實在工廠、物聯網的資料運算上,也具備非常高應用的潛力。
在物聯網領域,邊緣運算可以讓日常設備接受語音命令,例如越來越流行的智慧音響、安全攝影機,甚至能讓縫在衣物上的感測器追蹤主人的健康狀況, 而這些所有的私人資料都不必上傳到雲端。
荷蘭的高速公路、水路及橋樑系統等都是透過裝設感設器,蒐集大量資料,並透過邊緣運算來進行即時分析,這能提供官員作為決策的參考,在發生洪水等緊急狀況時,提供國家機構有效判斷的關鍵要素,邊緣運算低延遲、低功耗,在安全與連網方面都發揮了至關重要的用途。
邊緣運算有兩大困難需解決
回到文章開頭的太空探測器問題。
日本 JAXA 研究員嘗試開始使用 LeapMind 的工具來打造智慧相機,該演算法經過照片、角度、美學等各方面的訓練後,可以區分出好照片與不好的照片,並能在單個晶片上運行,所耗費的電力甚至不超過 10 瓦燈泡所需的電力。
不過,目前邊緣運算現在仍有兩大困難需要解決。Intel 副總裁 Jennifer D. Panhorst 便提出分析,指出這兩大困難,其一是將原生雲端應用部署在邊緣運算上;二是把原有的智慧運算,融入進更複雜的分散虛擬網路架構裡。
LeapMind 的創始人 Soichi Matsuda 說,若想將 AI 融入到電視、筆電或者其他任何現有裝置上,廠商可能有必要「重頭開始重新設計產品」。
資料來源:https://buzzorange.com/…/ai-needs-edge-computing-to-make-…/…