【立場轉載】【2020 諾貝爾物理學獎】廣義相對論與宇宙最黑暗秘密
打風落雨留在家,為何不試試學習黑洞的理論呢?😹😹😹
//諾貝爾獎有三個科學奬項,我們在學校也習慣以「物理、化學、生物」等不同科目去區分不同科學領域。這種分界當然能夠方便我們以不同角度去理解各種自然現象,但大自然其實是不分科目的。科學最有趣的是各種自然現象環環相扣,我們不可能只改變大自然的某一個現象而不影響其他。就好像蝴蝶效應,牽一髮而動全身。
廣義相對論間接推論暗物質存在的必要
廣義相對論是目前最先進的重力理論,它能夠解釋迄今為止所有實驗和觀測數據。然而,天文學家發現銀河系的轉速和可觀測宇宙的物質分佈,都顯示需要比觀測到的物質更加多的質量。這是物理學的其中一個未解之謎,有時會被稱為「消失的質量」問題。那些「應該在而卻看不到」的物質,就叫做暗物質 (dark matter) 。
有些物理學家猜測,會否根本沒有暗物質,而是廣義相對論需要被修改呢?他們研究「修正重力 (modified gravity) 」理論,希望藉由修正廣義相對論去解釋這些觀察結果,無需引入暗物質這個額外假設。可是從來沒有修正重力理論能媲美廣義相對論,完美地描述宇宙一切大尺度現象。
天文學研究向來難以得到諾貝爾獎,因為天文發現往往缺乏短期實際應用。然而過去十年之間,有關天文發現的研究卻得到了五個諾貝爾物理學獎。換言之,過去幾十年間改變人類對宇宙的基本認知的,有一半是來自於天文現象。其中有關廣義相對論的包括 2017 年的重力波觀測、 2019 年的宇宙學研究,以及 2020 年的黑洞研究。
不過很少人提及這三個關於廣義相對論的發現其實同時令暗物質的存在更加可信。因為這些發現測量得越精確,就代表廣義相對論的錯誤空間更小。換句話說,物理學家越來越難以靠修正重力去解釋「消失的質量」問題,所以暗物質的存在就越來越有其必要了。
換句話說,如果證明黑洞存在,其對科學的影響並不單止是為愛因斯坦的功績錦上添花,而是能夠加深人類對構成宇宙的物質的理解。
描述四維時空的圖
談黑洞之前,我們首先要理解一下,物理學家是如何研究時空的。研究時空的一種方法,就是利用所謂的時空圖 (spacetime diagram) 。一般描述幾何空間的圖,在直軸和橫軸分別表示長和闊,形成一個二維平面。有時更可按需要加多一條垂直於平面的軸,代表高度。長、闊、高,構成三維空間。但如果要再加上時間呢?那麼就再在垂直於長、闊、高的第四個方向畫一條軸吧。咦?
怎麼了,找不到第四個方向嗎?這是當然的,因為我們都是被囚禁在三維空間之中的生物。如果有生活在四維空間裡的生物,牠們會覺得我們很愚蠢,問我們:「為什麼不『抬頭』?第四個方向不就在這邊嗎?」就像我們看著平面國的居民一樣,在二維生物眼中,牠們的世界只有前後左右,沒有上下。到訪平面國的我們也會問:「為什麼不『抬頭』?第三個方向不就在這邊嗎?」但牠們無論如何也做不到。
宇宙是三維空間,另外加上時間。如果要加上時間軸這個「第四維」的話,我們就必須犧牲空間維度。物理學家使用的時空圖就是個三維空間,直軸代表時間(時間軸)、兩條水平的橫軸代表空間(空間軸)。當然,把本來的三維空間放在二維的平面上,我們需要一些想像力。在時空圖上,每個點都代表在某時某地發生的一件事件 (event) ,因此我們可以利用時空圖看出事件之間因果關係。一個人在時空中活動的軌跡,在時空圖上稱為世界線 (world line) 。
由於時間軸是垂直的,並且從時空圖的「下」向「上」流動。一個站在原地位置不變的人的世界線會是平行時間軸的直線。由於光線永遠以光速前進,光線的世界線會是一條斜線。而只要適當地選擇時間軸和空間軸的單位,光線的世界線就會是 45 度的斜線。因為沒有東西能跑得比光快,一個人未來可以發生的事件永遠被限制在「上」的那個由無數條 45 度的斜線構成的圓錐體之間,而從前發生可以影響現在的所有事件則永遠在「下」的圓錐體之間。這兩個「上」和「下」的圓錐體內的區域稱為那個人當刻的光錐 (light cone) ,而物理學家則習慣以「未來光錐 (future light cone) 」和「過去光錐 (past light cone) 」分別表示之。
所有東西的世界線都必定被位於未來和過去光錐之內。在沒有加速度的情況下,所有世界線都會是直線。如果涉及加速,世界線就會是曲線。而廣義相對論的核心概念,就是重力與加速度相等,兩者是同一種東西。因此我們就知道如果在時空圖上放一個質量很大的東西,例如黑洞,那麼附近的世界線就會被扭曲。不單是物質所經歷的事件,連時空也會被重力場扭曲,因此時空圖上的格網線和光錐都會被扭曲往黑洞的方向。換句話說,越接近黑洞,你的越大部分光錐就會指向黑洞內部。因為你的世界線必須在光錐之內,你會剩下越來越小的可能逃離黑洞的吸引。
2020 年的諾貝爾物理學獎一半頒給了彭羅斯 (Roger Penrose) ,以表揚他「發現黑洞形成是廣義相對論的嚴謹預測」。在彭羅斯之前的研究,大都對黑洞的特性作出了一些假設,例如球狀對稱。這是因為以往未有電腦能讓物理學家模擬黑洞,只能用人手推導方程。但廣義相對論是非線性偏微分方程,就算不是完全沒有可能也是極端難解開的,所以物理學家只能靠引入對稱和其他假設去簡化方程。因此許多廣義相對論的解都是帶有對稱假設的。這就使包括愛因斯坦在內的許多物理學家就疑惑,會不會是因為額外加入的對稱假設才使黑洞出現?在現實中並沒有完美的對稱,會不會就防止了黑洞的出現?
黑洞只是數學上的副產品嗎?
彭羅斯發現普通的高等數學並不足以解開廣義相對論的方程,因此他就轉向拓撲學 (topology) ,而且必須自己發明新的數學方法。拓撲學是數學其中一個比較抽象的分支,簡單來說就是研究各種形狀的特性的學問。 1963 年,他利用一種叫做共形變換或保角變換 (conformal transformation) 的技巧,把原本無限大的時空圖(因為空間和時間都是無限延伸的)化約成一幅有限大小的時空圖,稱為彭羅斯圖 (Penrose diagram) 。
彭羅斯圖的好處除了是把無限縮為有限,還有另一個更重要的原因:故名思義,經過保角變換後的角度都不會改變。其實在日常生活中,我們經常都會把圖變換為另一種表達方式,例如世界地圖。由於地球表面是彎曲的,如果要把地圖畫在平面的紙上,就必須利用類似的數學變換。例如我們常見的長方形或橢圓形世界地圖,就是利用不同的變換從球面變換成平面。有些變換並不會保持角度不變,例如在飛機裡看到的那種世界地圖,在球面上的「直線」會變成了平面上的「曲線」。
扯遠了。回來談彭羅斯圖,為什麼他想要保持角度不變?因為這樣的話,光錐的方向就會永遠不變,我們可以直接看出被重力影響的事件的過去與未來。彭羅斯也用數學證明,即使缺乏對稱性,黑洞也的確會形成。他更發現在黑洞裡,一個有著無限密度的點——奇點 (singularity) ——必然會形成。這其實就是彭羅斯-霍金奇點定理 (Penrose-Hawking singularity theorem) ,如果霍金仍然在世,他亦應該會共同獲得 2020 年諾貝爾物理學獎。
在奇點處,所有已知物理學定律都會崩潰。因此,很多物理學家都認為奇點是不可能存在宇宙中的,但彭羅斯的計算卻表明奇點不但可以存在,而且還必定存在,只是在黑洞的內部罷了。如果黑洞會旋轉的話(絕大部分都會),裡面存在的更不會是奇點,而是一個圈——奇異圈 (singularity ring) 。
黑洞的表面拯救了懼怕奇點的物理學家。黑洞的表面稱為事件視界 (event horizon) ,在事件視界之內,你必須跑得比光線更快才能回到事件視界之外。因此沒有任何物質能夠回到黑洞外面,所以黑洞裡面發生什麼事,我們都無從得知。就是這個原因給予了科幻電影如《星際啟示錄 (Interstellar) 》創作的空間——在黑洞裡面,編劇、導演和演員都可以天馬行空。只要奇點永遠被事件視界包圍,大部分科學家就無需費心去擔心物理學可能會分崩離析了。甚至有些科學家主張,研究黑洞的內部並不是科學。
雖然如此,卻沒有阻礙彭羅斯、霍金等當代理論天體物理學家,利用與當年愛因斯坦所用一樣的工具——紙和筆——去研究黑裡面發生的事情。雖然或許我們永遠無法證實,但他們的研究結果絕非無中生有,而是根據當代已知物理定律的猜測,即英文中所謂 educated guess 。利用彭羅斯圖,我們發現不單奇點必定存在,而且在黑洞裡面,時間和空間會互相角色。
但這是什麼意思?數學上,時間和空間好像沒有分別,但在物理上兩者分別明顯:在空間中我們可以自由穿梭,但在時間裡我們卻只能順流前進。彭羅斯發現,帶領掉入黑洞的可憐蟲撞上奇點的並非空間,而是時間,因此我們也說奇點是時間的終點。亦因為在黑洞裡面掉落的方向是時間,向後回頭是不可能的,所以一旦落入黑洞,就只能走向時空的終結。
看見黑洞旁的恆星亂舞
另一半諾貝爾獎由 Reinhard Genzel 和 Andreas Ghez 平分,以表揚他們「發現銀河系中心的超大質量緻密天體」。銀河系中心的確有一個超大質量的物體,而且每個星系中心都有一個。這些質量極大的物體,就是所謂的超大質量黑洞 (supermassive blackholes) 。
上世紀 50 年代開始,天文學家陸續發現了許多會釋放出無線電輻射的天體,稱為類星體 (quasars) 。之後其中一個類星體 3C273 被觀測確認是銀河系外的星系中心。根據計算, 3C273 釋放出的無線電能量是銀河系中所有恆星的 100 倍。起初,天文學家認為這些能夠釋放巨大能量的類星體,必然是些比太陽重百萬倍的恆星。但是理論計算結果卻表明,這麼重的恆星會是極不穩定的,而且壽命會非常短,因此類星體不可能是恆星。
為什麼這些類星體不可能是恆星?因為恆星的發光度是有極限的,而且正比於恆星的質量。這個極限稱為愛丁頓極限 (Eddington limit) 。如果恆星的發光度超出愛丁頓極限,光壓(radiation pressure ,即光子對物質所施的壓力)就會超過恆星自身的重力,恆星就會變得不穩定。因此,天文學家逐漸改而相信類星體是位於星系中心的超大質量黑洞。這也令類星體多了一個名字:活躍星系核(active galactic nucleus)。
每個黑洞旁邊都有一個最內穩定圓形軌道 (innermost stable circular orbit) ,依據黑洞會否旋轉而定,大概是黑洞半徑的 3–4.5 倍。比最內穩定圓形軌道更接近黑洞的範圍,環繞黑洞運行的物質都會因不穩定的軌道而墜落黑洞之中,並在墜落的過程中釋放出 6–42% 的能量,因此可以解釋活躍星系核的強大發光度。
另一方面,彭羅斯在 1969 年亦發現一個旋轉的黑洞能夠把能量轉給物質,並且把物質拋出去,這個過程稱為彭羅斯過程 (Penrose process) 。換言之,從黑洞「偷取」能量是有可能的。科學家估計,科技非常先進的外星文明有可能居住於黑洞附近,並利用彭羅斯過程從黑洞提取免費的能源。這個過程亦進一步支持超大質量黑洞能夠釋放巨大能量的理論。
由於 E=mc2 ,能量即是質量,因此被偷取能量的黑洞的質量就會減少。霍金在 1972 年發現一個不會旋轉的黑洞的表面積不可能減少。黑洞質量越大,其表面積就越大,因此不會旋轉的黑洞不會有彭羅斯過程。他亦發現,如果是個會旋轉的黑洞,其表面積是有可能減少的。因此霍金的結論支持了彭羅斯的理論。
Genzel 和 Ghez 兩人的研究團隊已經分別利用位於智利的歐洲南方天文台 (European Southern Observatory) 的望遠鏡和位於夏威夷的凱克望遠鏡 (Keck Telescope) 監察了距離地球約 25,000 光年的銀河系中心區域將近 30 年之久。他們發現有很多移動速度非常快的恆星,正在環繞一個不發光的物體轉動。這個不發光的物體被稱為人馬座 A* (Sagittarius A*, 縮寫為 Sgr A*) 。 Sgr A* 會放出強大的無線電波,這點與活躍星系核的情況相似。
他們不單確認了這些恆星的公轉速率與 Sgr A* 的距離的開方成反比, Genzel 的團隊更成功追蹤了一顆記號為 S2 的恆星的完整軌跡。這兩個結果都表明, Sgr A* 必然是一個非常細小但質量達 400 萬倍太陽質量的緻密天體。這樣極端的天體只有一種可能性:超大質量黑洞。
霍金輻射 黑洞的未解之謎
諾貝爾物理學委員會在解釋科學背景的文件中亦特別提及霍金的黑洞蒸發理論以及霍金輻射 (Hawking radiation) 。現時仍然未能探測到霍金輻射的存在,未來若成功的話除了將再一次驗證廣義相對論以外,更會對建立量子重力理論 (quantum gravity theory) 大有幫助。就讓我們拭目以待吧!
重力波研究、宇宙學研究、黑洞研究,都是直接檢驗廣義相對論預言的方法。加上 2019 年 4 月 10 日公布的黑洞照片,大自然每一次都偏心愛因斯坦。相信愛因斯坦在天上又會伸出舌頭,調皮地說:「我早就知道了!」//
表面積英文單位 在 劉天賜個人專頁 Facebook 的最佳貼文
天文台的一具老傢伙 - 劉天賜先生撰文
An Old Friend from the Hong Kong Observatory
Mr Lau Tin-chi
少時,大約三年班下學期,父親從天文台退休,從山林道四十七號四樓頭廳搬遷住紅磡漆咸道四佰二拾四號,政府華員會的漆咸大廈,新的獨立單位屋宇裡。父親仍然放置一張『鋼製寫字檯』於窗前,檯邊牆壁掛上了一具四方立體的東西,大約只有六吋乘六吋面積(圖一)。這四四方方的東西由外邊木框與及內鑲了兩個儀表組成。右邊長形儀表,我懂得是什麼,那時大家都叫『寒暑表』。正確一點稱為:『溫度計』,一條約四英吋長的玻璃管,很幼很幼,管兩旁都有度數,便是攝氏度數及華氏度數。那時候,香港仍用英制,天文台報氣溫用華氏表度數的。
When I was young at Primary 3, my father retired from the Observatory and we moved from the upper room on the 4th floor of 47 Hillwood Road to a flat in Chatham Building of the Hong Kong Chinese Civil Servants’ Association at 424 Chatham Road, Hung Hom. In our new home, my father had kept his steel desk and placed it by the window. On the wall next to the desk, there was a square object measuring approximately 6 inches by 6 inches (Figure 1), made up of a wooden frame and two meters. I knew the rectangular meter on the right. People called it, in Cantonese, a “meter showing summer and winter”, but its proper name was “thermometer”. On either side of a very thin glass tube about four inches long, there were scales marked in degree Celsius and Fahrenheit. At that time, the British system was still in use in Hong Kong and the Observatory reported temperatures in Fahrenheit.
『寒暑表』的左鄰,儀表面積比較大,有三枝『針』,表上有些英文字,以當年小學三年級才學a man and a pen的英文水平,不知是什麼一回事。
To the left of the thermometer was a larger meter with three “pointers” and some English words on it. Given the fact that I was in Primary 3 and “a man and a pen” pretty much summarised my English proficiency, I had no idea what this meter did.
圖一:前台長Mr Heywood夫婦贈送給劉天賜的父親劉伯華先生的退休禮物 - 家居用的溫度及氣壓計。
Figure 1: Mr Heywood, former Observatory Director, and his wife presented this home thermometer and barometer as a retirement gift to Mr Lau Pak-wa, the father of Lau Tin-chi.
父親掛上這具小小儀器之後,珍而重之,我未夠高度,根本『摸不著』儀器的屁股,遑論騷擾它了。平日,父親不多看它一眼,只有『打風』時節,才躬身細看這具小東西。
My father cherished this small piece of instrument that he had hung on the wall. I could not reach the bottom part of it even on tip toe, let alone mess with it. On a typical day, my father would not pay much attention to the instrument, but he would look at it closely during the typhoon season.
原來它的兩枝指針,不像時鐘長短指針活動的,平日靜靜地,只有『作打風』的時候,其中左手邊一枝便向下活動了。『作打風』這個名詞,近年來漸漸從老百姓生活中淡出了。普羅大眾在沒有空氣調節(冷氣)的空間生活,對環境溫度變化敏感得多。某天,感到很悶熱,風扇,人力撥扇愈撥愈熱,空曠地方吹來的是『悶熱的風』,入黑,飛出了飛蟻(白工蟻),有時,蟑螂也肆意滿場飛,大家心裡口裡都知道:『作打風了』!
I realised that the pointers did not move like the hands of a clock. Normally the pointers stayed quiet, but with the approach of a tropical cyclone, the pointer on the left would move downwards. While people in Hong Kong used to say “typhoon is coming!”, fewer and fewer people use the expression in recent years. In the past when there was no air conditioning, people were much more sensitive to temperature changes. On a certain day, it was exceptionally hot and stuffy, even with electric fans and paper fans, and the breeze was hot even in open areas. After dark, there were flying termites everywhere; sometimes, even cockroaches flew, and everyone knew “typhoon is coming!”.
『打風』是當時生活中一件大事!普羅市民戰戰競競如臨大敵,儘管是石屎樓,窗戶多是木框鑲玻璃。『打風』須做好防風措施。用繩索縛緊木窗,用膠紙打十字貼在玻璃面上,如窗戶有滲水情況,又要堵塞好。防風防雨忙過不亦樂乎。更不論那些住在僭建天台上、山邊,陸上艇戶等的居民了。大家心裡都不希望『打成風』,打得成,可能家破人亡,可能損失慘重。真與四十年後的香港市民心情大大不同了。
In those days, typhoons were a big deal. People were particularly anxious, as if they were facing a formidable enemy. This was because even in concrete buildings, the windows mostly had wooden frames and it was crucial that precautionary measures were taken before a typhoon struck. Wooden windows were secured with ropes and the glass was taped, while window leaks were sealed. It was indeed a lot of work getting prepared for heavy rain or the typhoon. Meanwhile, it was worse for people living in unauthorized rooftop structures, close to a hill or on boats. Everyone hoped that Hong Kong would not be caught in the path of a typhoon, because if it was, homes might be destroyed and lives could be lost. Forty years later in Hong Kong today, people feel completely different about typhoons.
『作打風』前夕,父親忙於看這小東西,並且將其中銀色小針調校,以便觀察另外一枝指針的走勢。幾小時後,便可能發現另一指針再往下走,他便會肯定的預言:『這場風打成啦!』小孩子不知什麼原故,打成風可怎樣?除了不用上學外,悶坐家中不好受的。
Before the arrival of the typhoon, my father would be busy looking at this small instrument. He would adjust the small silver pointer and observe how the other one moved. A few hours later, if the other pointer moved further downwards, he would announce with absolute certainly that, “the typhoon is on its way!” As a kid, I did not understand all the fuss about typhoons. Although I would get an extra day off from school, I would be stuck at home and it was rather boring.
年長,知道這具儀器是『氣壓計』,不必用電池或其他動力,內裡『機關』感應大氣內的氣壓,推動指針活動的,原理須問科學官了。父親離世之後,再細心看這陪伴我家數十年的『老傢伙』,是當年天文司Mr. Heywood夫婦贈送給家父的禮物,木框下一塊小銅片,刻上受物人贈物人名字和日期。『老傢伙』由家父退休哪年『服務』至他辭世,我做了它的主人後,不知如何使用,只放在案前裝飾。及有緣認識了天文台岑天文司和高級科學主任宋小姐後,知道設有一個歷史室,冒昧將這具家中呆了六十多年的『老家人』送去更有意義的地方(圖二)。當市民參觀天文台歷史室時,這『老傢伙』可能給觀眾一個新鮮的面貌,原來當年家居氣壓儀是這樣子的。
As I grew older, I learnt that the instrument was a barometer. Not requiring any batteries or other power sources, the “mechanics” inside senses the atmospheric pressure and causes the pointers to move. For details of the principle, you need to ask a scientific officer. After my father passed away, I had a good look at this “old friend” that had been in our family for decades. It was given to my father by the then Mr Heywood, the Observatory former Director, and his wife. The names of the givers and receiver, along with the date of presentation, were inscribed on a small plate under the wooden frame. Our “old friend” had served our family since my father’s retirement up till his passing, but after I became its owner, it was treated as an ornament on my desk because I did not know how to use it. Therefore, when I met Mr Shun, the current Observatory Director, and Ms Song, the Senior Scientific Officer, and learned from them that there was a History Room in the Observatory, I offered to send this “old friend” that had been with our family for more than six decades to a place where its existence would be more meaningful (Figure 2). When members of the public visit the History Room, hopefully our “old friend” can show them what a home barometer in the past looks like.
圖二:劉天賜(右)把父親的天文台退休禮物「温度及氣壓計」贈送回天文台,由岑智明台長(左)接收這件歷史文物。
Figure 2: Lau Tin-chi (right) donated his father’s retirement gift, a thermometer and barometer, to the Observatory. Mr Shun Chi-ming, the Director of the Hong Kong Observatory (left), received the instrument from him.
圖三:五十年代初,劉天賜父親劉伯華(右)在天文台工作,抱年幼的劉天賜坐上香港第一個測量站石墩上留影;今天劉天賜(左)再走到同一位置,笑說從前巨大的石墩縮小了。(相片提供:蘋果日報)
Figure 3: In the early 1950s, Lau Pak-wa (right), the father of Lau Tin-chi, worked in the Hong Kong Observatory. This photograph shows him with the young Lau Tin-chi sitting on a stone pier at Hong Kong’s first survey station. Today, Lau Tin-chi (left) revisits the place, and he says the giant stone pier has shrunk. (Photo courtesy of Apple Daily)