能源轉型正在一步一腳印地向前邁進之中 -- 加油站OUT加電站IN,工研院帶你揭「水系電池」 之“釩液流循環電池儲能系統”的神秘面紗..... (03/16/2020 蘋果日報)
工研院團隊正和中油公司聯手打造全國第一間智慧綠能加油、充電站。
(突發中心黃羿馨/新竹報導)台灣近年來積極推動再生能源政策,但太陽能、風力等「綠電」來源時間有限,要如何將這些綠能安全、穩定的儲存起來,並能24小時源源不絕供應成為重要課題。
工研院最新研發一種「水系」的釩液流循環電池儲能系統,不但具有適合長時間儲存特性,且因其安全、壽命長優點,非常適合做為定置型儲能設備,現階段除了和日本昭和電工簽署合作備忘錄外,也和中油公司聯手打造一間智慧綠能的「加電站(加油外亦能充電)」,為國內儲能產業開創新的里程碑。
釩液流電池幕後重要推手工研院綠能所組長張文昇,本身是化學背景出身,從2015年起,就與台灣電力公司綜合研究所合作開發「全釩液流儲能系統」,並於2016年完成全台第一個本土化全釩液流電池儲電系統,為台電的「綠能生態園區」提供穩定的儲電系統。
談起背後的辛苦,張文昇說,由於釩液流電池不同於一般常見電池,是將能量儲存於流動式的電解質中,而系統的心臟—也就是電池組,在設計上首要考慮就是避免「滲漏」的問題,以及如何讓液體流動平順,加上為了要改善電池體積大、笨重的問題,因此花了很多時間在電堆設計、材料、改質、密封以及操作控制上,團隊從2009年起至今,至少花了11年的時間改良、設計與測試,才走到今天這一步。
釩液流電池是以化學能的方式儲存在不同價態釩離子水溶液中,跟一般電池不一樣的地方在於,它是透過泵浦循環釩離子水溶液,經過碳電極後使釩離子的氧化價數轉變,藉此釋放與儲存能量,達到電化學儲能之功效。
由於本身沒有材料結構或是組成成分變化,只是簡單的氧化還原反應,因此不但安全性高,貴重的電解質材料也幾乎可以百分之百回收,能量效率更可達80%以上,比起同樣是水系的鉛酸電池,壽命更可長達10年以上。
此外,釩液流電池能儲存的能量,可隨著電解液槽體來擴充,也因其容易隨使用情境改變且壽命長的特點,未來可應用在電動車輛充電以及加油站自給自足使用上。
由於再生能源如太陽能、風力發電都屬間歇性綠電,釩液流電池更具有長時間儲存的優點,能將這些綠電儲存起來,未來就可以24小時源源不絕提供綠電,且也因兼具調解電力優點,讓再生能源輸出更穩定。
張文昇表示,目前工研院綠能所已和日本昭和電工合作投入「新型態全釩液流電池系統」研究,將透過改善全釩液流電池的電堆方式,大幅提升電池效率,未來可直接應用於電網儲能、離網電力、工業儲能、供電站等系統,現階段工研院已和中油公司,聯手打造一間智慧綠能加油站,為電動車等設備提供充電場所,未來加油站也有望成為加電站,帶動能源大革命。
釩液流電池小檔案:
原理:利用過渡金屬釩元素的多種氧化還原特性,透過泵浦循環含釩離子之水溶液,使釩離子經過碳電極,藉由釩離子的氧化價數轉變釋放或儲存能量,達到電化學儲能之功效。
特性:材料容易回收,儲存的能量,可隨著電解液槽體來擴充,較一般鋰電池安全、比鉛酸電池壽命長。
應用:電網儲能、離網電力、工業儲能、供電站等系統。
(資料來源:工研院提供)
完整內容請見:
https://tw.appledaily.com/new/realtime/20200316/1715166
♡
「鉛酸電池充電原理」的推薦目錄:
- 關於鉛酸電池充電原理 在 媽媽監督核電廠聯盟 Facebook 的最讚貼文
- 關於鉛酸電池充電原理 在 李開復 Kai-Fu Lee Facebook 的精選貼文
- 關於鉛酸電池充電原理 在 COMPOTECHAsia電子與電腦 - 陸克文化 Facebook 的精選貼文
- 關於鉛酸電池充電原理 在 鉛酸蓄電池消耗的主要原理與分析(文很枯長 - Facebook 的評價
- 關於鉛酸電池充電原理 在 103學年國三理化電化學10:鉛蓄電池 - YouTube 的評價
- 關於鉛酸電池充電原理 在 鉛酸電池原理的網友經驗分享跟評價,在PTT - 體育運動球賽 的評價
- 關於鉛酸電池充電原理 在 鉛酸電池充電時間計算2022-精選在臉書/Facebook/Dcard上的 ... 的評價
- 關於鉛酸電池充電原理 在 鉛酸電池充電時間計算2022-精選在臉書/Facebook/Dcard上的 ... 的評價
鉛酸電池充電原理 在 李開復 Kai-Fu Lee Facebook 的精選貼文
30歲轉行是失敗者?97歲諾獎得主的一生
誰說改變世界的都是年輕人?
今年的諾貝爾化學獎獲得者John B. Goodenough以他的傳奇經歷給出了答案。30歲入行,年過半百才正式研究電池材料,97歲時收穫諾獎,依舊活躍在科研一線。
今天與大家分享他的勵志故事。
來源丨量子位(ID:QbitAI)
97歲,他還奮戰在科研一線。
John B. Goodenough,人稱“足夠好”老爺爺,近日加冕諾貝爾獎。
10月9日,2019年諾貝爾化學獎頒向鋰電池領域。
Goodenough與M. Stanley Whittingham,以及日本科學家吉野彰(Akira Yoshino)共用了這一獎項。
以表彰他們在鋰離子電池領域作出的貢獻。
諾貝爾評獎委員會稱,三人的研究使鋰電池的使用方式更加穩定,從而開啟了電子設備便攜化進程,為打造一個無線互聯的社會奠定基礎。
引用果殼更科普化的解釋,如果沒有他們,我們每天形影不離的手機就是個隨時可能點燃的炸藥包。
而且Goodenough今年加冕,也刷新諾貝爾獎新紀錄——以97歲高齡,成為最年長的諾貝爾獎得主。
在此之外,他還是美國國家工程院、美國國家科學院、法國科學院、西班牙皇家科學院、英國皇家學會會員,撰寫了超過550篇文章、參與85本著作的編寫,是2009年費米獎得主、2017年威爾齊化學獎得主,還獲得了英國皇家學會的科普利獎章。
但這還不是Goodenough令人稱奇、敬佩的全部。
當他獲獎,外界關注他的履歷,才發現其充滿坎坷和跌宕的一生,簡直就是傳奇的一生、榜樣的一生,勵志的一生。
很難想像,這位鋰電池之父患有閱讀障礙症,成長家庭並不和睦,大學歷經二戰,30歲才拿下博士學位,年過半百才正式研究電池材料。
之後一路開掛,58歲發明鈷酸鋰電池改變世界,75歲以磷酸鐵鋰電池再度改變世界,90歲以後開始研究全固態電池。
至今如此高齡,依舊每週上班5天,仍舊有新研究成果問世。
如果你會有“現在做XX是不是太晚”的疑惑,一定要看看Goodenough這傳奇的一生。
┃如何成為鋰電池之父?
我們先從Goodenough如今成名作說起,看看他的科研之路。
Goodenough的博士本身讀的是固態物理,30歲從芝加哥大學博士畢業,之後去了MIT林肯實驗室,研究記憶體的材料物理和固態陶瓷。
24年之後,Goodenough進行了人生第一次“跳槽”。
那年,牛津大學需要一位能教無機化學,同時也能管實驗室的教授。
Goodenough雖然研究的是物理,但他本科的時候為了湊學分學了兩門化學課,就因此意外的被選中了,進入牛津大學任教,並成為無機化學研究負責人。
正是這一次跳槽,讓Goodenough終於在54歲的年紀開始了一項改變世界的研究。
Goodenough在牛津主要研究的課題是可用於能量轉換的新材料。當時他初到英國,英國化學家、和他一起獲得諾獎的Stanley Whittingham發明了最早的可充電鋰電池,借助鋰能嵌入二硫化鈦層間這一特性,用二硫化鈦做正極,用鋰做負極。
當時的消費電子產品只能使用不可充電的碳鋅電池,雖然已經有了可充電的鉛酸電池,但畢竟用在電動車上的鉛酸電池那麼笨重,是沒法拿來做消費電子產品的。
而Whittingham的這項研究,不僅可以靠鋰離子的運動進行充電,還能用在小型設備上,並在室溫下運行,解決了兩種電池的痛點。
但Whittingham的研究是沒法直接用的,因為有一個大bug:安全問題。
正極,二硫化鈦,在空氣中是非常不穩定;
負極,鋰,這種金屬是易燃;
而且,在充放電過程中,鋰會快速沉積產生枝晶,這樣就容易讓電池短路,這也是現在電動車自燃的元兇之一。
所以Whittingham發明的這種電池雖然原理可行,但容易爆炸,是個危險品,完全沒法應用,需要把正負極的材料都換掉才行。
這個時候,學了30年物理的Goodenough有了一個大膽的想法:把鋰換成氧化物吧。
他判斷,氧化物可以讓電池在更高的電壓下進行充電和放電,根據物理學原理,這種電池會產生更多的電量,並且揮發性會更小。
於是他測試了各種氧化物,發現如果把鈷這種元素放進去會比較穩定。
終於,在Goodenough到達牛津的四年後的1980年,57歲的他和水島公一、Philip Jones、Philip Wiseman共同發現了鈷酸鋰這種物質,讓Whittingham的鋰電池變得穩定多了。
在他的實驗室外面,英國皇家化學學會樹立了這塊藍色的牌子,紀念鈷酸鋰的發現。
不過,鈷酸鋰中的鋰和金屬鋰的化合價是不同的,鈷酸鋰在電池裡是一種正極材料,為了湊成一塊電池,還需要找一種負極材料。
這個時候,日本的索尼出現了,他們發現了石墨可以拿來做負極材料。
然而在英國,因為此前發生過爆炸事故,大家聞鋰電池色變,甚至Goodenough工作的牛津都不願意幫忙申請專利,而是讓英國原子能研究機構申請到了這個專利,後來被索尼買走。
於是,索尼成功接下了這個“燙手山芋”,並和自己研發的負極材料放在一起,創造了新的電池,並將之商業化,用在了各種各樣的電子產品中。
而Goodenough,甚至沒有從如今這價值350億美元的鋰電池市場中賺到錢。不過他本人後來在接受c&en採訪的時候反而很淡定:“我當時並不知道它會值這麼多錢。”
雖然在57歲才發現了讓他名聲大噪的鈷酸鋰,但Goodenough似乎就是一個耐久型選手,後來還發現了許多種電池材料:1983年,61歲的他發現錳尖晶石正極材料;1997年,75歲的他發現磷酸鐵鋰正極材料,這些都是電池正極的升級替代品。
甚至,為了持續做研究,他還打了牛津退休政策的擦邊球。
本來,牛津大學要求65歲強制退休的,但Goodenough不想退休,於是他在64歲的時候又跳槽了。
這次,他回到了美國,在德州大學奧斯丁分校當機械工程和材料科學教授,繼續做研究。
┃閱讀障礙症患者,文學少年讀物理PhD
Goodenough出生於1922年,這是一個科學蓬勃發展的時代。
在這一年,法國醫生卡雷爾發現白血球,加拿大科學家班廷製成人造胰島素。
波爾因關於原子結構以及原子輻射的研究獲得諾貝爾獎。
之後,費米、薛定諤等量子物理領域的大佬開始展露鋒芒。
兒時的Goodenough,雖然家就在耶魯附近,不過出生在了一個學文科的家庭,似乎離這些自然科學家們有些距離。
但數十年後,他也將成為他們中的一員。
當時,擺在他面前的,是怎麼克服自己的閱讀障礙症。因為閱讀障礙症,在小學和中學時代,他受到了不少同學的戲弄。
但在求學過程中,他也慢慢從大自然,以及詩歌和宗教哲學中獲得了力量,贏得了學校的獎學金。
1940年,18歲的Goodenough考入了耶魯大學。
對於他來說,這種對家庭的逃離讓他松了口氣,因為他父母關係並不好。
就在考入耶魯大學之前,他的父母離婚了。他父親(歷史教授)很快就與自己的研究助手成婚。
這個環境讓他頗感壓抑,而且他與自己父親的關係並不怎麼好。
他去耶魯讀書的時候,只從家裡拿到了35美元的資助,而耶魯的學費至少每年900美元。
好在他有獎學金,校長還幫忙安排他去給有錢人家的孩子當家教,靠著半工半讀養活自己,他再也沒問家裡要一分錢。
用Goodenough的原話說,就是“每週工作21個小時掙自己的21頓飯。”
進入耶魯之後,Goodenough還是遵循著自己的興趣,先是選了古典文學,後來轉到了哲學,期間還學習過化學。
之後,在一名教授的建議下選擇了數學專業,並堅持了下去。
但這一路也頗為坎坷,就在讀大學的第二年,珍珠港事件爆發了。
Goodenough選擇了主動申請服役,三年後才回到耶魯大學完成了學業。
畢業之後,他再度返回戰場,加入了美國空軍。
本打算和朋友一樣去報海軍陸戰隊,中途被數學老師叫去說“不要當大兵,我們需要懂數學的人做戰爭氣象預報”,於是沒有上前線,而是負責在一個太平洋的海島上收集資料。
1946年,Goodenough迎來了命運的轉折。當時,美國政府出資,選派軍人去深造,獲得了耶魯大學教授推薦的Goodenough就在其列,他可以選擇在芝加哥大學或西北大學學習物理或數學。
經過重重考慮,他決定前往芝加哥大學攻讀物理學博士。
之前就想過考物理研究生,但被管學生註冊的人告知,物理學裡所有厲害的東西,人家在你這個年紀都已經搞完了,你現在才想著開始啊?
最終,他還是考上了芝大物理系,當時是恩裡克·費米在管,據說費米一上來就給新生安排了一個32小時的超級大考試,每天8小時,連考4天。
第一次考掛了,於是又考了第二次才過,總計64小時。
其後師從著名物理學家齊納,他30歲時發明齊納二極體。
在芝加哥這幾年,他主要的研究固態物理學,並打下了堅實的理論基礎,對於自己人生方向也有了新的思考。
在他求學期間,齊納也給他提供了很大的幫助,他曾對Goodenough說:“你有兩個問題,第一個問題是找到問題,第二個問題是解決問題……”
這一理念,對Goodenough產生了很大的影響。
30歲獲得物理學博士學位之後,經過在MIT的工作以及自身的理解,在牛津大學他選定了自己的方向——電池材料,並一直堅持了下去。
┃還能再戰,不想退休等死
直到現在,他還在科研一線繼續解決“問題”。
2018年,Goodenough接受媒體採訪時也談到了自己的問題,他說:
“我想解決汽車的問題,我想讓汽車尾氣從全世界的高速公路上消失。我希望死前能看到這一天,我今年 96 歲,還有時間。”
而且,解決問題並不僅僅只是靠口號。
Goodenough仍舊活躍在科研前線,就在最近,他和自己的團隊還發現了一種用於鈉離子電池的新型安全正極材料。
並仍舊有作品發表,比如這篇:
J.B. Goodenough, Personal journey into solid state chemistry, Journal of Solid State Chemistry 271 (2019) 387–392.
(https://www.sciencedirect.com/science/article/pii/S0022459618305607 )
就在幾個月前,他還在採訪中說:
我不想退休等死,我想努力奮鬥,我相信我們正在做的事情是非常重要的。
這些重要的事情有很多,比如他嘗試用自然界中存量更多的鈉代替鋰作為電池材料,以降低電池的成本。
再比如,如何用金屬鋰做正極,製造出更強大的電池。
還有電解質方面,Goodenough也在嘗試用玻璃固態電解質做出更安全的電池。
據說,“足夠好”老先生現在依舊精力充沛,有人在知乎上回答說,整個走廊都能聽到他爽朗的笑聲。
嗯,足夠好,還會更好。
鉛酸電池充電原理 在 COMPOTECHAsia電子與電腦 - 陸克文化 Facebook 的精選貼文
#電源設計 #電池充電 #降壓—升壓型電池充電器
【供應電壓大不同?萬用充電器就能搞定】
電源是電子產品的生命,然由於各種產品的電池組成與額定電壓不盡相同、充電的輸入電壓範圍大,有時會低於或高於輸出電池的負載電壓;為了適於替各種化學電池充電並接受各式電源輸入,電池須同時具備升壓及降壓的能力。凌力爾特 (Linear) LTC4020 降壓—升壓型電池充電器可在 4.5V~55V 的輸入範圍內運作,並產生高達 55V 的輸出電壓;由一個「降壓—升壓型 DC/DC 控制器」和一個「PowerPath」電池充電器組成,專為多種電池化學組成而優化。
LTC4020具有許多特點,包括:PowerPath 即時接通、基於定時器的充電、電池溫度監視、用於高阻抗電源的輸入電壓調節、充電狀態和故障報告,是一款通用的高電壓、高效率降壓—升壓型電源控制晶片。它採用四開關降壓—升壓型轉換器,只需一個電感轉換器的輸出直接連到系統負載,且能同時為電池充電。最大充電電流可藉由採樣電阻進行監測和調節,用戶可自行選擇在充電通路上加一個「場效應管」,以便在需要時將輸出電池與系統負載分開。
LTC4020適用於汽車電池、12V~24V軍工業/醫療用電源或太陽能板,採用三種充電模式,針對不同電池類型最佳化:
—對鋰電池可選擇恆流、恆壓充電模式,既可採用1/10電流,也可定時以終止充電;
—鉛酸電池可用優化的四步三級充電模式;
—帶定時功能的恆流充電。
它採用平均電流型控制,抗干擾能力強,電感平均電流透過輸入部分的兩個採樣電阻進行監測,能在系統負載供電的同時,為電池充電。充電過程中,充電通路場效應管絕大部分時間皆在開通狀態,阻抗很低。將電池和轉換器輸出連接在一起,對於過度放電而電壓很低的電池,LTC4020會自動將充電通路場效應管設置為一個線性穩壓器,以允許降壓—升壓型轉換器輸出;當高於電池電壓時,仍然能夠充電,該功能被稱為「即時開通」。
只要輸入電源具備,轉換器能立即提供高於電池電壓的輸出。在非充電狀態下,LTC4020自動將充電通路場效應管設置為一個理想二極管,如此電池與轉換器輸出是斷開的;然而一旦系統負載電流超過轉換器的最大供電能力,額外功率馬上能由電池通過該理想二極管,高效提供給負載。詳細工作原理如影片連結所示。
延伸閱讀:《Linear:高效率降壓—升壓型電池充電器》
http://www.compotechasia.com/a/CTOV/2015/1103/30397.html…
(點擊內文標題即可閱讀全文)
#凌力爾特Linear #LTC4020
圖檔取材:pixabay.com
鉛酸電池充電原理 在 103學年國三理化電化學10:鉛蓄電池 - YouTube 的推薦與評價
介紹鉛蓄電池,包括正負極、放電及 充電 時正負極產物,說明鉛 電池 可 充電 , 充電 的電源,如何 充電 ,以及鉛蓄電池的使用、保養、優缺點。 ... <看更多>
鉛酸電池充電原理 在 鉛酸電池原理的網友經驗分享跟評價,在PTT - 體育運動球賽 的推薦與評價
二、鉛酸電瓶原理及充電方法介紹. ... 中,讓硫酸濃度提高,把電又存回給鉛酸電池,使得電壓也提高。 正負極與硫酸液之充放電反應,為全可逆之儲放電能主反應,但若是 ... ... <看更多>
鉛酸電池充電原理 在 鉛酸蓄電池消耗的主要原理與分析(文很枯長 - Facebook 的推薦與評價
結晶後的硫酸鉛充電時不但不能再還原成氧化鉛,還會吸附在柵板上,造成了柵板工作面積下降,鉛酸蓄電池發熱失水,鉛酸蓄電池容量下降,這一現象叫硫化,也就是常說的老化。 ... <看更多>