從火星探測系統到輔助工業製程,美國工業用 AI 新創 Beyond Limits 如何在台灣做到技術在地化應用?
李佳樺 2021/08/13
從2012 年美國太空總署成功將探測車「好奇號」送上火星至今,已經過了3000多個「火星日」,肩負著火星探測的重要任務,8年來好奇號傳回許多對火星的重要觀察與發現。背後更不為人知的,則是好奇號的 AI 運算系統,其實是由美國新創 Beyond Limits 的團隊建立的,公司發展至今也將觸角伸到能源、先進製造等產業,建立 SaaS 服務,為產業提供 AI 輔助平台,2020 年更獲得 1.3 億美元的投資,拓點到台灣、日本、新加坡、香港等地。
Beyond Limits 將 AI 應用到產業製程的契機,源自於當時跨國石油集團 BP 在墨西哥灣發生的漏油事件,企業希望導入 AI 優化決策過程,合作中也發現了石化能源產業的痛點,研發出石油配方建議系統、石油製程操作檢引系統等 SaaS 產品,不僅受到美國石油公司歡迎,日本市場也買單。
有了日本的先例,這套美國研發出的產品,照理說要拓展到亞洲市場應該不成問題,不料到了台灣卻窒礙難行,甚至需要重新開發不同的產品。
Beyond Limits 的台灣團隊究竟面臨了什麼挑戰?
台灣市場與美國差異大,Beyond Limits 台灣團隊必須如創業般從頭研發產品
台灣分公司總經理張中宜說明,台灣產業的先天特性,讓美國母公司已開發的產品都面臨市場可行性低落的問題,以石油產業的產品舉例,在台灣只有中油、台塑兩個客戶,且台灣的石油公司並不做研發工作,多半直接向國外公司購買配方,因此團隊必須在美國 SaaS 模式 的技術基礎下,研發出符合台灣市場、針對不同產業需求的商品。
「Beyond Limits 在台灣設立公司時的處境,跟重新創業差不多。」張中宜表示,AI 應用產品的開發不僅需要能夠從零開始寫演算法的工程師,也要有懂產業製程的專家團隊,龐大的研發費用與對產業專家的需求,讓每一次產品開發都像募資活動,團隊必須透過產業訪談做足市場研究找到痛點,說服製造公司與他們合作開發能解決產業問題的軟體。
然而開發全新市場對張中宜來說並不陌生。
她曾經在孟加拉創立幫助偏遠地區孩童課輔的非營利組織 e-Education ,第一年就讓偏鄉學子考上孟國最高學府卡達大學,更順勢搭上鼓勵企業與 NPO 合作的開放式創新風潮,讓卡西歐、 AI 新創、安永都找她擔任顧問,執行戰略布局或開發新通路的工作,面對 Beyond Limits 在台灣的難題,團隊選擇了電動車電池研發、面板機器手臂維修與人流異常預警系統等三個產業切入。
延伸既有美國產品技術,尋找合適的台灣在地產業切入開發產品
選擇電動車電池產業與 Beyond Limits 在美國石油產業的經驗有關,研發電池的過程與石油廠研發機油的邏輯相似,痛點都在於漫長的研發過程,就像做菜時要多次嘗試才會知道多少的鹽與油才是最佳的調配一樣,電池配方更要經歷至少半年的實驗,且實驗設計也要在無數次團隊與客戶的交鋒後才能成型,溝通成本相當高昂。
使用 Beyond Limits 導入認知 AI 架構的電池配方建議系統,研發人員只要以自然語言輸入期望的電池規格、價格與電車轉速,系統即可在 43 分鐘內提供數百種配方與實驗方式供選擇,縮短約 2 千倍的研發時間。
Beyond Limits 也在 7 月 29 日宣布與日本的三井物產公司進行策略結盟,以其認知 AI 的核心技術,協助三井投資的液化天然氣廠進行巨量資料分析,並整合作業人員專業知識與數位化作業模式,制定出精簡有效率的解決方案。日本三井整合數位策略部部長常務董事真野雄司氏說,透過與 Beyond Limits 的合作可以改善與再造營運流程,更有效率執行現有事業群的高附加價值項目。
另外,Beyond Limits基於公司在美國既有的輔助風電機維修平台,投入面板機器手臂維修建議系統的開發,「雖然也想在台灣用同一套產品幫助風電產業,也與風電廠陸續接洽,但台灣的風電仍在建設階段,缺乏營運經驗,目前的維修需求也不高。」張中宜談到,市場開發的大方向是要在台灣尋找具備預測維修需求,且市場密集、成熟的產業,公司在與投資人仁寶電腦的合作中,發現光電面板產線中機器手臂的維修概念與風機維修類似,而且痛點也類似:包含高昂的維修成本、未經標準化的維修流程,以及依賴經驗的維修決策。
目前輔助維修系統正與日本機器手臂原廠合作開發,由廠商提供維修資料與產業專家, Beyond Limits 透過 AI 分析維修數據,建立資料背後的邏輯推演,系統最終能判斷機器損壞的原因,並建議耗材種類與維修方式。從管理者的角度能降低維修、備料倉儲成本,對維修人員來說也有可依循的維修建議,長遠更能累積產業知識 ( domain know-how ) ,促進升級。
以邊緣運算技術,與北捷合作開發人流異常預警系統
而將技術從太空拉回到地面,Beyond Limits 也能在大眾運輸犯罪預警上有所發揮。他們與北捷合作,使用等同於在火星探測時、消弭與地球時差的邊緣運算技術,原理是透過分散式的運算提升效率,達成在監控系統的邊緣節點就進行異常人流的辨別,降低反應時間落差。
張中宜舉例,正常的人流像是乘客擠進車廂內的固定位置,開始滑手機,異常的人流可能是人群往四面八方散去,產生快速移動的樣態,異常訊息可以在 10 秒內將送到中控室,大幅縮減以往需要 4 分鐘以上的訊號傳輸時間,也能避免踩到人臉辨識的紅線,未來希望擴張應用到大樓監控,或是銷往他國的大眾運輸系統。
源自NASA,認知型AI成為技術優勢與門檻
與其他單純使用機器學習技術分類數據並預測結果的數值 AI 系統不同,Beyond Limits 的 AI 服務融合了數值 AI 與符號 AI ,前者的數值 AI 是透過大量數據讓模型認知「此為何物」,而符號 AI 則是藉由邏輯定義數值 AI 判斷的結果是好還是壞,並加以做出決策與判斷,以電池配方為例,將實驗室過去的實驗數據導入數值 AI 系統後,會得出樹種配方組合,再藉由符號 AI 判斷個配方辦法的優劣,並給予客戶回饋與建議。藉由結合數值 AI 與符號 AI 兩大系統的結合,讓人工智慧的每項建議都能以人類可理解的思路解釋,輔助人類做最後決策,也使人機協作的製程模式成為可能。
對於這項技術,張中宜表示這其實是源自於 NASA 將探測器「好奇號」送上火星後,由於火星與地球之間的數值傳遞有時間差,人類基本上不可能遙控好奇號,而且火星上的數據在這之前是 0,所以數值 AI 也無法運作,為了能夠讓好奇號自行在火星上探測與行動,勢必須要模擬人類大腦的認知型 AI 系統,當時才會開發出符號 AI。
根據研究報告,2025 年工業用 AI 規模將達 160 億美元,其應用開發仍具高度可能性,Beyond Limits 在台灣也希望更全面地研發產品打進該市場。除了正在培養市場的風電產業外,未來也希望協助優化晶圓半導體產業的製程,團隊更積極與社會、產業溝通,讓社會了解 AI 進入產業能讓人類更有餘力進行創意發想與決策,也讓產業正視轉型需求,近期將與台灣新創基地合作舉辦 AI 科普講座,持續促進製造業的人機共榮合作。
創業快問快答
Q:服務的創意來源,是因為發生甚麼事情而有這樣的想法?
A:台灣數位轉型瓶頸
Q:創業至今,做得最好的三件事為何?
A:用國際薪資招聘頂尖人才、台灣市場國際定位清楚、客戶分潤共創模式的商業模式
Q:要達到下一步目標,團隊目前缺乏的資源是?
A:能見度
附圖:BeyondLimits 台灣總經理 張中宜
Beyond Limits 以數值AI及符號AI兩大關鍵技術,達到人機互補智能
圖片來源 : Beyond Limits
擠捷運
圖片來源 : diGital Sennin on Unsplash
圖說:BeyondLimits Hybrid AI導入流程說明
BeyondLimits Hybrid AI導入流程說明
圖片來源 : BeyondLimits
資料來源:https://meet.bnext.com.tw/articles/view/47993?fbclid=IwAR2HbB5FrPIBoV9kDL27OnhNF-JDNzfYdsoLoVKn85yAA7GUjzDzI3y5Lw0
零階通路舉例 在 高虹安 Facebook 的精選貼文
七月的第一天,虹安在線上參加了第十屆工程、技術與STEM教育研討會,今年主辦單位是宜蘭大學資訊工程學系、協辦單位是成功大學工程科學系、IEEE台北分會 Young Professionals Group,研討會主題為「結合跨領域的工程教育」。虹安從資訊學碩士再到機械博士,現今又在立法院服務,橫跨了三個領域,當天的演講主題是「數據科學與國家治理」,由於疫情的關係,只能在線上跟各位老朋友、學界伙伴相見。
💡 科普時間:什麼是STEM教育?
✒ STEM,是四個英文字的第一個字母結合而成--科學(Science)、科技(Technology)、工程(Engineering)、數學(Mathematics)--是近年相關產業最喜歡用的關鍵字,歐美也有許多STEM教育的相關計畫,希望未來教育能從「知識傳遞」進化為「學以致用」,著重於科學、科技、工程、與數學的跨領域資訊整合,使知識成為可用資源的思維。
虹安首先以自身的學習、工作經歷作為開場,就讀資訊工程系所時的虹安,也跟你我的學生時期一樣,熬夜寫程式debug、拼命K書📚、做研究;到了機械博班的階段,要在博士班的過程一口氣弄懂機械系學生四年學到的內容,結合自身的資工背景,激發出insight 💡變成博士論文。過程中也曾經怨嘆過為什麼想不開,為什麼要跨領域讓自己這麼累;再到了科智的創業時期,獲得了 #全球創業賽第一名 的殊榮,跨領域的學習逐漸展現出成果;接著又到了鴻海集團擔任工業大數據辦公室主任貢獻所學,同時也擔任郭台銘創辦人的特助,命運的際遇讓我來到了立法院擔任第十屆立法委員。這次跨離了工程領域,虹安仍然戰戰兢兢,但過往累積的經驗與能量,使我能把立委的角色擔任好,虹安的大數據專長讓我問政時更能以事實和邏輯分析為根據,以數據避免政治口水,也為立院帶來了不同的科技思維。
#而且立院的同事跟科技業的很不一樣
接著,虹安以「數據思維的重要性」作為切入,說明了零售業龍頭Amazon建立了「線下」實體通路的用意是什麼、又如何決定什麼商品該在架上展示,現今的一切,不再用經驗法則決定,而是 #大數據驅動的結果,「妥善用數據分析就能看到別人看不到的價值」。在2011年,發源於辛辛那提的奇異(GE)公司,發表了GE Industrial Internet System,舉例說明了 Product (or Service) Data Life Cycle,強調了數據收集、數據比對與分析、決策改善等三個要素的Life cycle,這Life cycle適用於各領域的大數據分析和應用,重點是,以數據驅動需求的首要原則是:From gut feeling To data agility,將主觀意識下有限的數據來源,轉變到客觀心態下更大更完整的#開放式數據來源,如此一來,養成數據化的工作模式,就能得到洞察數據敏感力,看到別人看不到的價值。
而在 #國家治理方面,虹安舉了去年質詢陳時中部長的 #口罩地圖 為例,說明了大數據分析用於口罩分配的成果😷,並可解決城鄉口罩用量不同的物流輸送問題,使每個需要的人都可以買到口罩。各縣市的口罩分配不應該只是齊頭式平等;而我用的方式,就是上述的「數據收集、數據比對與分析、決策改善」三要素;虹安才能以明確的數據質詢蘇院長,7600萬片口罩到底去了哪裡。除此之外,虹安在立院密切關注的,還有 #數位發展部 的成立。數位發展部源自國家對於數位科技產業及發展的重視,成立數位發展部以進行國家數位發展政策之規劃、協調、推動與法規擬定及執行,並著重國家資通安全政策、法規、重大計畫與資源分配之擬定、指導及監督,這會是虹安在立院第四個會期的重要工作項目。
值得一提的是,會後教授們的提問十分精闢,虹安大致整理如下:
①女性工程師的教育環境、社會支持的情況
②科研成果的產出,凝聚成政策推動的的能量,再從政策回到高等教育的增進,形成正向循環的方式
③數位發展部的角色對於高等教育的影響,是否與科技部/國科會有所不同
很謝謝學界朋友的交流,這次的演講讓我暫離政治圈回到本業,虹安將會從這些面向進行研議與推動,希望我的分享也能給予學界跨領域的交流與互動。
#回歸自己的本業既熟悉又開心
#跨領域最難的是要花很多時間讀書
#想了解虹安的歷程可看面試郭台銘
零階通路舉例 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
為了活下去,全球最大的零售商沃爾瑪變身數據公司
文:王茜穎 / 若水 Flow AI Blog 編輯團隊
【本文重點】:
1. 今天,人工智慧不再是一種選擇,而是生存下去的基本必須品。
2. 為了預測消費趨勢、提高供應鏈和營運效率,沃爾瑪張開數據網,即時監控2000億筆的內部交易數據,200 個外部數據。
3. 從行銷、採購、品管、上架、庫存管理到配送,AI 正在改寫超市地景和運作方式。
零售業是一個國家最古老的行業。但你發現了嗎?全球最大的零售業龍頭沃爾瑪 Walmart,正在把自己變成一家數據公司。
它不得不。它最大的競爭對手,吃下線上零售市場一半江山的電商龍頭亞馬遜,不斷探索線下經營。繼實體書店、無人便利店 Amazon Go、收購全食超市(Whole Foods Market)之後,2019年再度推出 Amazon 4-star,銷售在亞馬遜網站上獲得4顆星以上評價的商品,準備對線下零售市場攻城掠地。
「今天,人工智慧不再是一種選擇,而是生存下去的基本必須品。」知名暢銷作家Bernard Marr 說。《華爾街日報》形容這是一場「不斷升級的科技地面戰」。
如何確保對的產品在對的時機,放在對的位置,做出對的定價,以方便對的人購買,是競爭白熱化的零售業的致勝關鍵。
即時監控2000億筆的內部交易數據,200個外部數據
為了抓出客戶需求、提高供應鏈和營運效率,沃爾瑪阿肯色州本頓維的總部設立了@WalmartLabs 和 Data Café(Collaborative Analytics Facilities for Enterprise,企業協作分析工具),監控過去幾週高達2000億筆的內部交易數據,以及氣象、經濟、電信、社交媒體、油價、鄰近沃爾瑪的重大事件(如:體育賽事)、美國最大評論網站Yelp、信用徵信網站Experian等200個外部數據。
沃爾瑪每週預測全美4700家店,共500億件商品需求,「我們每個週末都提出一套新的預測,」「我們有12小時完成所有的預測,約3天完成所有的訓練。」@WalmartLabs 傑出數據科學家和數據科學主任John Bowman說。
但沃爾瑪的規模實在太大了,Bowman說原有的開源軟體,「隨著我們擴大演算法規模,加入愈來愈多的數據,涵蓋愈來愈多的類別,開始遇到嚴重問題」,目前其預測模型是由內部改寫和開發的機器學習演算法組成,每項商品的預測,都建立在350個數據特徵上。
除了預測消費風向,最基本的,「用來確保門市和配送中心的庫存水位,足以滿足預測的需求。它不只幫沃爾瑪控制庫存成本,也確保架上的庫存足以應付來客或網路訂單。」前@WalmartLabs印度班加羅爾主任Nitin Sareen指出。
沃爾瑪 Walmart 同時收集所有顧客的消費紀錄、住在哪裡、並從店內的免費無線網路追蹤其產品喜好。2017年的報導指出,沃爾瑪掌握了6成美國成人,近1.45億人口的詳細資料。「我們想知道世界上所有的產品,我們想瞭解世界上每一個人,然後我們想要擁有連結兩者,促成交易的能力。」前沃爾瑪全球電子商務與科技執行長Neil Ashe曾說。
它的「社會基因體計畫」(Social Genome Project)監控社交媒體上的公開對話,參透消費者的社交DNA,藉以預測消費趨勢。沃爾瑪開發的Shopycat禮品推薦APP,「透過社會基因體計畫,分析朋友的臉書上的讚、分享、發文等動態,解除送禮壓力,提高送禮樂趣。」
當人們在線上展現我們的喜怒哀樂時,沃爾瑪就從分析臉書和推特的對話,在趨勢轉成需求前,成功預測棒棒糖蛋糕機、電動榨汁機的需求,立刻進貨、鋪貨。
數據讓沃爾瑪(Walmart)能預測未來趨勢,抓出過去錯誤
除了預測未來,即時數據和分析,讓沃爾瑪從異常銷售數字中,立即抓出定價失誤,或發覺特定門市根本未將商品上架的問題。機器學習把解決問題的時間從2~3週,大幅縮短為20分鐘。「若你得花上一週或一個月分析你的銷售數字,才能獲得洞見,你那段時間的營收已經蒙受損失。」沃爾瑪資深統計分析師Naveen Peddamail說。
為了收集消費者資訊,沃爾瑪甚至在2012年推出了自己的搜尋引擎Polaris。今年2月,沃爾瑪再度收購以色列科技新創Aspectiva,利用其自然語言處理功能 (Natural Language Processing),讓電腦擁有理解人類語言的能力,分析客戶的產品評論等用戶生成內容,並結合其瀏覽行為,以提供個人化的產品推薦。
沃爾瑪每小時產生約美國國會圖書館館藏167倍的數據,這些通通餵給雲端。沃爾瑪和微軟聯手建立全球最大的私人雲,每小時從百萬名消費者身上收集2.5 petabytes非結構化的數據,做出行銷、採購、鋪貨、庫存管理等各種決策。有一說,此舉是要和亞馬遜的Amazon Web Services (AWS)一別高下。
衝刺電子商務戰場,營造個人化體驗、用AI 工智慧鞏固生鮮市場
電子商務上,沃爾瑪仍看不到 Amazon 亞馬遜的車尾燈。
為此,沃爾瑪接連併購 Jet.com、Bonobos、中國電商 JD.com、及砸160億美元買有「印度亞馬遜」之稱的 Flipkart,去年沃爾瑪亦翻新官網,挾其龐大的數據能力,用消費者的所在地、瀏覽和購買歷史,加強區域與個人的個人化體驗。
例如,顯示當地熱門商品、通常一起合購商品、「我的門市」生鮮配送服務;提供「輕鬆續訂」功能,類似亞馬遜網站上的快速按鈕(Dash button)。去年第四季,沃爾瑪的電子商務營收成長43%,eMarketer並預測今年底沃爾瑪將分食4.6%的市場,較去年成長4%,居全美電商第三名。
沃爾瑪抓緊數據,苦苦追趕,有其苦衷。根據Accenture 2016年的調查,58%的消費者傾向在有個人化推薦的網站購物,一旦沒有,最快60秒就會失去興趣;SmarterHQ的報告則指出,在這樣的情況下,47%的消費者會直接轉往亞馬遜,便宜了沃爾瑪的頭號競爭對手。
為了拉抬線上銷售,沃爾瑪祭出廉價生鮮優勢。去年底全美有1600家門市提供生鮮配送,3100家門市設提貨中心。亞馬遜迅速回防,今年4月,旗下的全食超市推出第三波降價,以及2小時生鮮配送,1小時店內提貨,要挖沃爾瑪牆角。
這是一塊沃爾瑪輸不起的戰場。不同於亞馬遜,生鮮佔沃爾瑪全美近6成營收。金雞母保衛戰,沃爾瑪用AI和相機打造「新鮮度演算法」,名之「伊甸園」(Eden),用AI檢查蔬果缺陷和新鮮度,預測腐壞日期,確保蔬果從農場到貨架全程新鮮,終結食物(成本)浪費。在全美43個配送中心試用6個月,已替沃爾瑪省下8600萬美元,預計5年內將省20億美元。
在此之前,沃爾瑪必須派員在配送中心先目視檢查送進來的生鮮,接著再手動檢查是否符合美國農業部和沃爾瑪內部的食品標準。
「伊甸園源自我們生鮮營銷團隊工程師間的一場駭客松。」沃爾瑪部落格說。在6個月內,他們量化了美國農業部和沃爾瑪內部的食品標準,並發給稽查員一支iPhone,用Eden的APP記錄各種蔬果在不同生命週期時的樣貌,是否符合各項食品標準。這百萬張照片的資料庫,成了人工神經網絡進行深度學習最佳教材。
當稽查員在現場拍下照片時,機器將比對資料庫中的圖像,經過一層層,千百萬個神經元的數值運算後,評估蔬果新鮮度,預測保存期限,最後決定接受或退貨。沃爾瑪還把iPhone送到農夫手上,讓他們在農產品運送前先拍照,通過伊甸園把關再上路,從頭減少因品質而被退貨所衍生的成本。
「這代表(我們)能更有效率地催熟香蕉,當番茄還長在藤上時,就預測出它的保存期限,或依此調整蔬果上架的優先順序。」沃爾瑪供應鏈技術副總工程師Parvez Musani分析。販賣生鮮是一場和時間賽跑的賭局。時間,就是金錢。
除了產地和配送中心的品管,他們發現運輸過程中的溫度,也會影響蔬果新鮮度。為此,伊甸園即時監控蔬果在貨車裡的溫度,若發現溫度飆升導致蔬果「短命」2天,則立刻重新安排貨車路線,送到較近的配送中心,減少損失。
Musani舉例,沃爾瑪的明星商品香蕉,來自7個拉丁美洲國家,鋪貨到全美4千多家門市。不久的未來,在跨洲、跨國、跨州的長途運送過程中,伊甸園會重新估算「新鮮度」,決定香蕉運到哪裡。「最後香蕉會運到較近的門市,確保最新鮮,消費者樂於買一串美味香蕉,人人皆大歡喜。」
跟 Amazon 亞馬遜搶食 AI 語音購物市場
眼紅於亞馬遜語音助理Alexa登堂入室,開口即可在亞馬遜下單,沃爾瑪也想搶食語音購物市場。
近來的專利申請,透露沃爾瑪打算在產品中內建物聯網電子標籤,以監控家用品的使用情況,例如追蹤保存期限,或你提起洗潔精的次數,藉此推測何時需要補充,自動加入你的購物清單,並為沃爾瑪提供顧客行為的龐大數據,包括產品使用的時間和頻率。
今年4月起,直接呼喚Google Assistant也能在沃爾瑪下單,可在全美超過2100家門市提現貨,800家門市領取網購商品。由於語音下單容易指示不清(例如:買2罐洗衣精),為求準確,沃爾瑪顧客的消費記錄將和Google Assistant帳號綁定,以判斷脈絡。
儘管目前語音購物對營收的貢獻很小,分析師紛紛預測這是未來趨勢。為了「不落人後」,沃爾瑪甚至投資一家針對上流社會的個人購物服務新創Jetblack,會員可用簡訊「遠端遙控」購物員幫他們購物,年費要價600美元。
簡訊的文字,是絕佳的機器訓練素材。「沃爾瑪正在利用Jetblack的大批人力來訓練其AI,盼其有朝一日能提供自動化的個人購物服務,為搜尋欄消失,聲控購物成為主流的那一天,提早做好準備,」Jetblack執行長Jenny Fleiss告訴《華爾街日報》。該報分析,沃爾瑪將該投資視為AI和語音購物的研究中心,打算用它來打造和亞馬遜Alexa抗衡的秘密武器。
而JetBlack正是從沃爾瑪位於矽谷的科技孵蛋器Store No.8孵出來的新創公司。為了尋找下一代的零售科技,沃爾瑪透過Store No.8來孵化、投資新創,與創投和學術界合作,開發機器人、虛擬實境、機器學習和AI技術。
AmazonGo會是沃爾瑪的未來嗎?
自去年10月底,沃爾瑪旗下的倉儲式商店Sam’s Club宣布將在德州開第一家無結帳員的超市後,大家都在揣測沃爾瑪超市何時會跟上AmazonGo的無人店。
4月底,沃爾瑪公布了它的「未來超市」。它改造了紐約州Levittown的門市,化身「零售智能實驗室」(Intelligent Retail Lab),在真實運作的超市裡,裝滿感應器、攝影機、並建有龐大的數據中心。「這些硬體佈線之長足以爬聖母峰5次,處理能力之強大每秒能下載3年份的音樂(27000小時)。」沃爾瑪的部落格寫著。
5萬平方呎,3萬件商品,超過百名員工,可以確定的是,沃爾瑪的未來藍圖,不是AmazonGo。
具有人工智慧的攝影機,並非用來分辨消費者拿了什麼,好自動結帳,而是用來監控貨架上的存貨。機器「看見」架上商品,準確辨識品項和數量,並對照預測銷售需求的量,即時通知員工哪些商品空了,立刻補貨,或哪些放太久,立即下架。如此一來,確保架上永遠有貨,而且絕對新鮮。
這不是沃爾瑪第一次用AI來即時盤點庫存。
走進今天的沃爾瑪,你可能會碰到Auto-S貨架掃描機器人,穿梭在繁忙的貨架間。
自駕車的感應器和人工智慧,讓它能即時辨識路徑中的障礙物,優遊於樑柱、顧客、店員之間,避免碰撞。身高2英尺(約60公分),機器手臂最高可達8英尺高,裝有高解析度相機可快速掃描架上存貨、標價標籤和商品位置,而且免傳雲端,運用卡尼基美隆大學研發的Hawxeye人工智慧,機器人可現場用機器學習進行圖像辨識,加快分析速度,減少無用數據。
不到1小時,機器人就掃完數十個貨架,找出缺貨、庫存過低、沒有標籤、標價錯誤和錯置的商品,通知店員處理。在過去,這得花上一群人數天時間才能完成。
目前全美有50家沃爾瑪使用Auto-S貨架掃描機盤點架上商品。目前總里程650英里(近1千公里),尚未發生任何事故。來源:KPIX CBS SF Bay Area / 沃爾瑪
這提升了顧客的便利性,確保他們總能在對的貨架上找到想買的東西。對沃爾瑪而言,這能降低人事成本,減少貨架空間的浪費,但它還有更重大的意義:「驅動這類新科技的動力,是走向全通路零售的必要性。為了提供當天、低價或最後一哩運送,你必須以這些門市做為配送中心。但要實現這個目標,他們真的需要即時掌握架上有什麼,」Auto-S的製造商Bossa Nova執行長Bruce McWilliams接受Venturebeat採訪時說。
入口處的自助提貨塔就是明證,只要掃描你的網路訂單條碼,45秒內你的貨就會出現在輸送帶上,取貨變得跟「高科技自動投幣機」一樣方便。自駕車配送也進入測試階段。
去年11月,沃爾瑪宣布與福特合作,用自駕車宅配;7月,和Waymo(Alphabet旗下子公司,專門研發自駕車)聯手,在亞利桑那州小規模試點,「http://xn--walmart-6p3l44vn4ljhs1l8c981cucbz07isk0a.com/grocery下單,選擇到店取貨,我們的個人購物助理便會依據取貨時間,細心準備訂單上的商品。剩下的就交給Waymo。Waymo會接送顧客往返門市取貨,你可以利用這段時間完簡訊、小睡、工作,隨心所欲。」沃爾瑪部落格如此描述。
這一切聽起來,像是科幻小說?
沃爾瑪可不這麼認為,「今天,變化的速度很快。10年前,多數客戶還在讀第一代iPhone的消息,懷疑是否實用。現在,他們用手機上買東西,就期望宅配到府或店裡取貨 – 而且通常是當天,幾小時內,甚至幾分鐘內,」沃爾瑪執行長董明倫(Doug McMillon)說,「零售商得適應這些變化 – 在某些領域甚至引領潮流 – 不然就會落後並消失。」
附圖:圖說:去年改版後的沃爾瑪網站,新功能包括當地熱門商品、快速追蹤訂單、快速續訂、我的當地門市服務等,強化區域及個人化體驗。來源:沃爾瑪
圖說:伊甸園的APP介面,機器藉由照片的圖像辨識和比對,預估蔬果新鮮度。來源:沃爾瑪
圖說:只要45秒,16英尺高的自助提貨塔,就會準備好你訂的商品。來源:沃爾瑪
資料來源:https://ai-blog.flow.tw/walmart-ai-data-retail