久しぶりに強化学習での歩行をやり直しました。次から色々やるかも。
今回は、視線の情報も取り入れて落とし穴を避けてます。
参考資料:
Unity Machine Learning Agents
https://unity.com/ja/products/machine-learning-agents
Emergence of Locomotion Behaviours in Rich Environments
Effects of Exoplanetary Gravity on Human Locomotion Ability
Nikola Poljak, Dora Klindzic, and Mateo Kruljac
「Super Thanks」をしてくださった方、ありがとうございます。
Twitter:
https://twitter.com/physics_engine0
裏チャンネル:
https://www.youtube.com/channel/UCVBWuZftk2Oq1CbzehHjT4g
#物理エンジンくん #mlAgents #reinforcementlearning
「mlagents」的推薦目錄:
- 關於mlagents 在 Science Experiments with Physics Engine Youtube 的最佳解答
- 關於mlagents 在 Unity ML-Agents Toolkit - GitHub 的評價
- 關於mlagents 在 unity3d - Trying to use OnActionReceived(ActionBuffers action ... 的評價
- 關於mlagents 在 MLAgents Train to Move To Target (Unity 2021) - YouTube 的評價
- 關於mlagents 在 Training the marathon environments | marathon-envs 的評價
- 關於mlagents 在 Unity for Games - Score! ⚽️ #MLAgents Take a look at... 的評價
mlagents 在 MLAgents Train to Move To Target (Unity 2021) - YouTube 的推薦與評價
This is my second MLAgent (Artificial Intelligence - AI) training video. This one is a step above the simplest training. It is to train an ... ... <看更多>
mlagents 在 Unity ML-Agents Toolkit - GitHub 的推薦與評價
The Unity Machine Learning Agents Toolkit (ML-Agents) is an open-source project that enables games and simulations to serve as environments for training ... ... <看更多>
相關內容