#學習寫程式 #誰可以成為軟體工程師 #小吃貨轉職日記 #個人心歷路程
不知道是否還有人記得,很久以前我問了大家一個問題是,覺得什麼樣的人可以成為軟體工程師。
其實一直以來,我覺得只要會英文的人就可以學會寫程式,就可以成為軟體工程師。
為什麼會這麼覺得呢?
首先,就像是,你覺得誰學會使用電腦是一樣的道理。如果你在三十年前問大家這個問題,可能很多人會覺得,只有念相關科系的人可以學得會。
在我們還在DOS的時代,還在打指令的時代,那時只要會打字,就可以成為文書處理專業。沒錯,那個年代,文書處理是一個科系。
但現在,有誰會去大學念一個科系,只有學打字使用Microsoft Office系列。
當然,軟體工程師也並不是一個容易的職業,就像我之前提過的,這個職業也有很多利與弊,不是像外面形容的那樣,好像坐在電腦前面打打字就可以做的,或者像其他工作那樣,可能學了一技之長可以用很久,這個行業的一技之長,可能很快就過保鮮期了。
回到學習寫程式這件事情,在台灣聽很多人都說,「啊!寫程式就是要有天份啦!」「聰明的人啊!」也看過很多網路上的人在吵,資工vs 資管 vs 非本科系什麼之類的。
最近有朋友問我說,為什麼在台灣的時候學不會,可是來英國以後我就學會了,是因為來英國以後特別努力嗎?
其實你到現在問我學會了嗎?我也不會跟你說我什麼都會。但的確光是coding這點,我覺得在台灣學習跟來英國學習最大的差異還是在,學習的動力上面。
在台灣的時候,其實有點為了學而學,從來沒有思考過自己是否真的有興趣,有時候以為自己其實也滿有興趣的,因為那些東西以前沒有碰過,可是只要碰到一點瓶頸 ,就會開始退縮,覺得好煩喔!這些東西怎麼這麼難,只要上課聽不懂老師在說什麼,就會很不想繼續學。
在台灣除了去資工系修課以外,也有去台大資訊系統訓練班上過課,也有上過一些線上的課程。
幾乎都是同樣的感覺,甚至覺得,自己是不是年紀大了,感覺什麼都學不會,聽不懂,自己好像很笨。
來了英國以後,上課的第一天,老師說,我會用英語授課,而且不會為你們放慢速度,因為你們必須要去習慣。當時覺得自己更不可能聽懂,也不可能學會。
可是我們上課的狀況通常是,一天上課兩個小時,上完以後有兩個小時的實驗課,大家坐在電腦前,老師一個一個看你做的東西,從很小的東西開始學。
我覺得這個應該算是滿關鍵的,就是有沒有動手實作。然後不會的話老師也很耐心的教,此外老師還有另外的課後時間,只要我們有問題都可以去找他。
在實驗課的時候,中間只要卡住,老師也會盡量讓我們自己去思考,而不會直接告訴我們答案,例如會問我們,為什麼你想這麼做,這麼做的原因是什麼。
我記得很久以前在台灣的大學,問了老師一個問題,老師的答案是,你以後就會知道了。當下其實就讓人覺得有點反感,而且後續問老師很多問題,老師也是都這樣,這個以後就會學到了。
我自己算是一個滿會因為老師而喜歡一個科目或不喜歡一個科目的人。就像我小時候很討厭數學課,也是因為不喜歡數學老師。也不是真的不喜歡,就是有一種覺得,反正老師也不在乎我學不學的會,只在意那些學得好的人。
在台灣也聽過很多人說,啊要學會寫程式,數學就要先打好基礎,數學不好怎麼寫程式。可是真的成為工程師以後,在工作上根本沒用到什麼基礎數學啊!
其實在英國也遇過很多數學系畢業的,可是害怕寫程式的人也很多,他們這邊通常學校會有一兩堂課是寫程式,可能學個Python, 像我之前念書的學校,學不好的很多,一些很厲害的大學的數學系,也有人就乾脆放棄那門課,不學,因為覺得很複雜,他們寧願把時間拿去研究純數。
不過現在的電腦,都會幫你做好各種基本數學運算了,大部分現在的程式語言,你要跑什麼線性回歸什麼的都幫你做好了,也想不到什麼時候會用到三角函數之類的,除非你的工作是什麼data scientist 之類,可能要建立複雜的數學模型,或者quant 那類的,不然就算你要做Machine Learning這類的東西,也有很多已經現有的工具,軟體工程師大部分就是拿來跑一跑。
要是你真的是做機器學習相關的研究,人家也不要你軟體工程師,人家要的是資料科學家背景,人家至少要你有個PhD唸完再來,你要至少會讀paper, 寫paper做研究啊!!
如果是醫學相關的軟體,需要有專業技能,人家也要找醫學背景的來,如果是金融相關的,需要有非常多的金融專業技能,當然也是從金融背景的比較容易。
通常軟體工程師,普通的軟體工程師職缺,就是不太會需要太多納些相關的專業領域,他們也願意你進去了再學,你主要需要的是快速學習、適應環境的能力,還有溝通能力,這樣如果跟其他專業領域的科學家、研究員、分析師溝通之類的,至少你可以不會有太多的障礙。
當然,軟體工程師的工作也可以細分成很多領域,像是遊戲產業的軟體工程師,或者IoT產業的軟體工程師,甚至還有像是軟體架構師、軟體分析師、資料工程師之類的,他們可能需要使用到的技能也不一樣,但也不會沒事就需要叫你算個三角函數之類的.........通常你的背景還是在於你對於寫程式的熟悉程度,你會使用那些工具,你是否是個團隊合作的人,能否跟大家一起寫程式。
總之,回到前面說的,所以到底學習寫程式需要什麼,英文真的是很重要的一環,因為程式語言本來就是英文為主,在來就是網路上的資源,也幾乎都是英文為主。還有你寫程式的環境,也幾乎都是英文,像是你使用的工具,回報給你的錯誤訊息也常常可能是英文的。
來英國以後一直在思考的一點,在台灣討論到會不會寫程式,或者學不學的會,通常英文好的話,也可能在閱讀文件方面比較快,可以快速學到一些東西。
語言也不是全部,如果已經在工作的話,工作環境也很重要,學習環境也很重要,在學校如果遇到一個很好的老師,或者有一起學習的夥伴們,也會比自己一個人獨自專研來的快,不過每個人的學習方法不同,更重要的是找到自己喜歡的學習方法。
反正如果你想學的話,也不用管其他人講什麼,想學就學啊!當初我要學的時候,也很多人覺得我不可能學的會或者不可能成為軟體工程師之類的。
其實也不是因為我原本念歷史系的原因,主要就是,大家覺得,我是一個沒有邏輯,邏輯不好的人。還有覺得我是一個三分鐘熱度的人,以及數學指考考了不到30分。這些我也都寫在部落格裡面了,所以一直以來都有在看我文章的人,大概也都知道了。
當時,我大概聚集了所有身邊當工程師的朋友,都覺得不可能會成為工程師的因素吧!但現在我還是做為一個軟體工程師賺錢就是了。
有時候想做什麼就去做,反而是一件比較容易的事情。尤其是學習這種事情,網路上也有很多資源可以學習也不一定需要花錢。
在學校的時候,除了老師給予我一些自信以外,另外也是在英國認識了一些人,給予了一些鼓勵,有些素未謀面的人,也有些一面之緣的人,可能也是因為他們不認識原本的我,所以都覺得,沒有什麼是我不能找到工作或成為軟體工程師的原因。
現在想想,或許這就是初生之犢不畏虎的概念,當初沒有想太多就跑來英國,然後來了以後才開始覺得必須要努力一點才能找到工作,中間也遇到了很多困境,工作以後也曾經想過要放棄當軟體工程師,想要去當個什麼辦公室助理之類的。
也經歷了很多覺得很困惑的時期,雖然自己現在還是滿困惑的。但我覺得如果你真的想要學習或者轉職,只要做好功課(這點真的滿重要的,至少不要覺得只是看別人好像不錯,就決定要去做,至少要衡量一下利與弊),就可以去做吧!也不用管別人說你適不適合走這條路怎樣的。
每個人適合走的路也不太一樣,還沒走之前都看不到,就算你看身邊的人都怎樣,自己還是自己。
「python machine learning書」的推薦目錄:
- 關於python machine learning書 在 小吃貨的英國生活日記 Facebook 的最佳貼文
- 關於python machine learning書 在 紀老師程式教學網 Facebook 的最佳貼文
- 關於python machine learning書 在 軟體開發學習資訊分享 Facebook 的精選貼文
- 關於python machine learning書 在 Re: [心得] 自學AI資源分享- 看板DataScience - 批踢踢實業坊 的評價
- 關於python machine learning書 在 今天看完這本"Deep Learning|用Python進行深度學習的基礎 ... 的評價
- 關於python machine learning書 在 2022 從Python到TensorFlow線上讀書會TensorFlow書本導讀 的評價
- 關於python machine learning書 在 Python for《Deep Learning》,该书为《深度学习》(花书 ... 的評價
- 關於python machine learning書 在 六.【机器学习】和python学习之路吐血整理技术书从入门到进 ... 的評價
- 關於python machine learning書 在 machine learning書、機器視覺自學、機器學習課程推薦在PTT ... 的評價
- 關於python machine learning書 在 Python 機器學習書= 看鎖住的ig dcard 的評價
- 關於python machine learning書 在 python machine learning書2022-在Facebook/IG/Youtube上的 ... 的評價
- 關於python machine learning書 在 python machine learning書2022-在Facebook/IG/Youtube上的 ... 的評價
python machine learning書 在 紀老師程式教學網 Facebook 的最佳貼文
[免費電子書] 想在新的一年提昇自己的機器學習、資料科學能力嗎?這邊有 14 本全文、免費的電子書或許能幫您!(英文)
"14 Free Data Science Books to Add your list in 2020 to Upgrade Your Data Science Journey!"
網址: https://bit.ly/3nfp3yv
----------
大家好!今天介紹給大家的是,我在網路上找到的「好康」資源!14 本關於「機器學習」、「資料科學」的英文全文的電子書,讓您免費下載!
我除了第一時間把它放到 D 槽(呃...對!是 D 槽... XD)外,就是想到趕緊分享給大家!讓需要的朋友也能下載到這些優質的電子書。
雖然我沒有每一本都看完,不過我可以分享幾本我覺得很有印象的書:
#2. The Field Guide to Data Science by Booz Allen Hamilton
這本書的內文版面設計真心漂亮!作者放了很多「柔柔的」插圖,讓你看了之後不會對這本書起厭煩,能好好地把它多看個幾頁!您可以前往上面的連結觀看,或者直接點擊這個連結: https://bit.ly/3mdaHNE 就能直接看到!
這本書講的內容,偏重資料科學的「前處理」部分。包含資料讀取、清洗、特徵選擇、降維...等等。如果有需要的朋友,很推薦這本書喔!
#10. Deep Learning (Adaptive Computation and Machine Learning series) by IAN Goodfellow
這本書應該算 Deep Learning 的「聖經」了!上面的連結中,對於這本書沒有提供電子版的閱覽連結,只有通往 Amazon 的購買網址。我特別幫各位 Google 到該書的全文閱讀連結如下:
https://www.deeplearningbook.org/
該書也已經有繁體中文翻譯版了。大家也可以參考這個連結購買,支持一下該作者: https://bit.ly/3m94Ton
#11. Deep Learning with Python by Francois Chollet
這本書超讚! Francois Chollet 就是 Keras 套件的作者!由他來寫深度學習的書,真的是再適合也不過了!上方連結一樣只有 Amazon 購買網址。我幫各位 Google 到「神秘的網址」(咳咳...),讓各位方便瀏覽: https://bit.ly/3nd3wXl
這本書也有中文翻譯!如果您覺得英文讀不習慣,可以選擇購買中文版: https://bit.ly/2W97hAY 。我一開始買了英文版驚為天人!中文版出了之後,雖然看過了,但又忍不住買回來收藏!給各位參考!
希望今天的分享大家會喜歡!祝福大家收穫多多喔!
PS: 本文歡迎轉發、按讚、留言鼓勵我一下!您的隻字片語,都是讓我繼續提供好物的動力喔!
--------
看更多的紀老師,學更多的程式語言:
● YOTTA Python 課程購買: https://bit.ly/2k0zwCy
● YOTTA 機器學習 課程購買: https://bit.ly/30ydLvb
● Facebook 粉絲頁: https://goo.gl/N1z9JB
● YouTube 頻道: https://goo.gl/pQsdCt
如果您覺得這個粉絲頁不錯,請到「評論區」給我一個好評喔!
https://www.facebook.com/pg/teacherchi/reviews/
python machine learning書 在 軟體開發學習資訊分享 Facebook 的精選貼文
開源報報精彩內容回顧
內容摘要
✅ 編譯器學習資源集錦
✅ 正確命名精選集錦
✅ 一個精選的 Python 框架、程式庫、軟體和資源列表
✅ 你所不知道的 Javascript 開源電子書
✅ 一個功能完整安裝在容器中的電子商務應用程式
✅ 一個輕量級的 JavaScript 實用工具,用於建立 Markdown + LaTeX 文件
✅ 微軟 REST API 設計指南
✅ 手繪風格的 react 圖表程式庫
✅ 用於簡單的客戶端/ 伺服器端 GraphQL 快取 Npm 套件
✅ 用於基於 React 框架(Gatsby 和 Next.js )的網站編輯工具套件
✅ 將你的 Raspberry Pi 變成一個內建 DNS 解析的廣告阻隔伺服器
✅ Kubernetes Cluster 檢查器最佳實踐
✅ 一份可縮短 Flutter 初學者和到開發出容易維護,乾淨程式碼 Flutter 專案差距的教學指南
✅ 資料科學的就業建議
✅ 適合機器學習和資料科學的乾淨程式碼概念
✅ 附有 Jupyter notebook 的金融模型演算法收集
✅ VS Code 中做及時的 GraphQL API 的開發
✅ 為 OpenPGP 初學者準備的加密套件。 它被設計成透過瀏覽器或可獨立執行的執行程式
✅ Redis 桌面管理程式
https://softnshare.com/opensource-news-005-machine-learning-cleancode/
python machine learning書 在 今天看完這本"Deep Learning|用Python進行深度學習的基礎 ... 的推薦與評價
書裡實作使用python 3.x / Numpy / Matplotlib 實作Deep learning, 既不用tensorflow 也不用Keras 等框架。 對,就是自己實作MLP... ... <看更多>
python machine learning書 在 2022 從Python到TensorFlow線上讀書會TensorFlow書本導讀 的推薦與評價

TensorFlow 書本導讀: 使用書籍: Deep learning 深度學習必讀:Keras 大神帶你用 Python 實作導讀章節:第九章結語更多資訊可以參考讀書會官網: ... ... <看更多>
python machine learning書 在 Re: [心得] 自學AI資源分享- 看板DataScience - 批踢踢實業坊 的推薦與評價
感謝原 PO 的分享,我也來分享一下我自己的學習清單
==== 前言 ====
去年因緣際會知道了有關大數據、資料科學、機器學習這些領域
本來考慮要去參加資策會的課程,但自己要在家帶小孩
如果參加課程,小孩要找保母,整個機會成本太高,因此決定自學先
網路課程現在幾乎是隨手可得,想要自學的人根本不怕沒有教材可以學習,但是五花八門
的課程中,怎麼去選擇就是一個很重要的問題了。
我自己是一個門外漢,因此在選擇課程以及安排上面花了蠻多時間,以下大多是我看過或
是大概瀏覽過覺得不錯的課程,就推薦給想要自學又不知道怎麼開始的朋友們吧~
==== 概論 ====
由於自己雖為國立大學數學系畢業,但畢業非常多年,加上自己也非科班出身,因此想要
先了解整個領域的範疇、概要,之後再開始針對各個科目分進合擊。
PS : 初期我自己都以大數據為出發點,所以上的課都是大數據概論取向,但再其中其實
對於資料科學、AI、機器學習都會講到。
1. [ Coursera ] 大數據分析:商業應用與策略管理 (Big Data Analytics: Business
Applications and Strategic Decisions)
這門課是台大與玉山銀行合作開的線上課程,與其說是課程,我認為比較偏向講座,在這
過程中可以對大數據、機器學習等在商業上的應用。這堂課可當作補充資料來上,會有一
些實務應用上的概念,當然,如果沒時間也不一定非得要上。
2. [ Coursera ] Big Data Specialization
University of California, San Diego 開設的這們課程,我個人還蠻推薦的,尤其是對
跨領域、無先備知識的學習者來說,可以在這一系列課程中很快速地對整個領域有蠻深入
的理解。
3. [ Book ] 精通 Python
4. [ Book ] Python 資料科學學習手冊
這兩本都是 O’REILLY 的經典書籍,我必須坦白說我沒有完整的看完,精通 Python 我
針對資料科學的部分有完整看過,然後做習題,但裡面很多章節稍微跟資料課學無關的我
幾乎都暫先跳過,而資料科學學習手冊我是都拿來當工具書翻閱。( 所以我 coding 能力
還是一樣很差XDDDDD )
==== Python ====
第二階段我開始以 Python 為主進行學習,因為我自己 coding 能力幾乎是 0,這個部分
必然要作為初期學習的重點項目。另外,雖然說這是第二階段,但其實這部分跟上述的概
論課程我幾乎都是同時期一起上課。( 不過我坦承到現在我自己的 coding能力還是很差XDD )
1. [ Coursera ] Python for Everybody Specialization
這門是 University of Michigan 所開設的 Python 專項課程,完全從 0 基礎開始上課
,上完以後可以可以進行一些初階的程式作業我想是沒有問題的,這堂課並沒有太多針對
資料科學的部分,主要是以各領域都會用到的基礎工具為主。Charles Russell 的上課方
式我超喜歡,喜歡友去上課方式的人我想也會跟我一樣喜歡這門課。
2. [ Coursera ] Applied Data Science with Python Specialization
一樣是 University of Michigan 開設的,這專項課程我作為上門課程的接續課程。前面
幾堂會針對 python 在資料科學中會用到的模組、方法進行概略式的瀏覽,後面則會針對
視覺化、機器學習等領域做較為深入的介紹。整個課程較上一門來說困難度增加不少,因
為我自己有做手寫筆記的習慣,這門課的許多東西在我現在 coding 遇到問題時都還能翻
閱筆記作為工具書使用,我覺得受益不少。
3. [ Coursera ] Fundamentals of computing
Rice University 所開設的課程,之前應該也是在論壇看見推薦的,但課程難度較高,目
前我也是暫時先擱置還未進行這課程的學習。
===== Machine Learning =====
1. [ YouTube ] 機器學習基石 & 技法
(Machine Learning Foundations and Techniques)
台大林軒田教授所開設的機器學習課程,在 Coursera 與 YouTube 軍可以免費觀看課程
內容。這門課主要以基礎的機器學習演算法為主,但雖然說世紀處演算法,但內容包含的
數學比重較重,啃下來的確會有點困難,但整個課程的安排的確非常流暢,老師的講述也
算是蠻清楚。而且教授對於課程教學十分用心,如果在 YouTube 或是 Coursera 上面提
問,教授 (或助教) 都會盡可能地回覆。( 即使課程已經是兩三年前的課程了,現在也都
會看到教授的回覆,非常用心。 )
2. [ YouTube ] Machine Learning — 李宏毅
台大李宏毅所開設的機器學習課程,一直以來都是台灣及中國學習者極力推薦的中文課程
之一。課程內容與時俱進,每一年都會將最新的機器學習、深度學習的演算法、模型加入
到課程內,讓學習者能夠跟上整個領域的發展。數學的比重比林軒田教授的課程低,而且
多了許多有趣的範例及講述,上課起來輕鬆不少。然而,影片內容我個人覺得安排較為紊
亂,可能是每一年的課程進度剪接而成,在某一些地方的銜接度較差,這是上課時稍微讓
人困惑的地方。不過瑕不掩瑜,這門課程我認為還是非常值得花時間上的。
[ 補充 ] 最近中國一些人將李宏毅的課程整理成一個 github 專案,完全複刻課程內容
,包含了課程中的所有 demo 以及課程作業內容,非常值得大家在上課的同時做參考使用
。
[ 補充 ] 李宏毅另外有一門課程 " Machine Learning and having it deep and
structured ",會更深入講解機器學習的演算法跟架構,這也是後續上完 Machine
Learning 後可以深入補充的課程。
3. [ Coursera ] Machine Learning — Andrew Ng
由 Stanford University 的吳恩達教授所開設的課程,這已經是全世界公認的經典了,
不過已經花了大半年上完前面兩門課程的我,可能要稍作休息,待日後有機會再來進行這
門課程的學習。
4. [ YouTube ] Large-Scale Machine Learning
清大吳尚鴻所開設的課程 (https://www.cs.nthu.edu.tw/~shwu/courses/ml/),忘了在哪
看見推薦的,我有上去大概看了一下,就學習論的部分我覺得講解的蠻清楚,就也是有空
可以再回頭來看看。
===== Mathematics =====
整個 Machine Learning 所涵蓋的數學領域其實是很廣的,有一些甚至不是數學系四年會
碰觸到的部分,而且某些部分甚至都是數學系、所一整學年的課程,我認為不用太糾結每
一個數學細節,找到一個可以說服自己的方式就好。( 當然,如果你真的想走演算法這條
路,要求就要再提高ㄧ些 )。如果有時間我會建議可以把機率統計以及線性代數的部分上
過一次(我大學機率統計實在學得慘不忍睹),我認為這兩個領域如果可以上手,就會輕鬆
許多。
1. [ 清大開放式課程 ] 機率論
2. [ 清大開放式課程 ] 統計學
3. [ 清大開放式課程 ] 數理統計
這三們都是清大鄭少為老師所開的課,基本上他的機統普遍受到許多人的推薦,我自己有
看過前面幾堂的機率論,我認為條理清楚,講義也很詳細,這是我真的很想找時間上的課
程。
4. 線性代數
這個部份我目前暫時沒有重新上課的打算,大學教授上的非常好,我的筆記也都還留著,
就可以來回對照著參考,如果有推薦的課程也可以讓我知道,一起推薦給所有人參考看看
。
===== 補充資料 =====
這裡推薦幾個我認為很有幫助的學習途徑,有些是課程,有些並不算是。但我認為都可以
在上面這些基礎課程以外作為增強實力的補充教材。(備註 : 這裡我選出來的都是比較廣
泛性的平台,但 Medium 或是ㄧ些個人部落格也有很多非常棒的補充資料可以看,但這樣
的資料多且雜,我就暫時沒收在下列推薦名單中。)
1. AI 研習社 ( https://ai.yanxishe.com/ )
不得不說,中國在這領域的發展真的比台灣快而且豐富,當我在學習過程中找尋中文資料
時,九成都是從中國的論壇或是部落格中找到,台灣在這方面的分享上面的確比較少。
AI 研習社我會建議大家可以去他的線上課程看,裡面有幾個大師級的課程 ( 重點是有簡
中字幕XD ),例如 Hinton 的課程我就會想要找時間來看一下。裡面還有一些資料、論文
整理的部分,大家也是可以上去晃晃看。
PS:它有一門「機器學習必修之數學基礎」系列課程其實我還蠻有興趣的,但是學費不便
宜就…
2. CSDN博客 ( https://blog.csdn.net/ )
不管閱讀論文還是課程上面有疑問,絕對可以針對同一件事情再上面找到非常多樣化的解
釋。上面我曾經說過,很多時候不要拘泥,找到一個能說服自己的方式就好,通常我都會
在許多不同的解釋當中選擇一個我比較理解且能接受的方式作為我對這件事情的理解。
3. 知乎
這有點像是中國版的奇摩知識+ (?),針對一個問題也可以看到底下有許多不同角度的切
入,我覺得這樣的學習其實蠻不錯的。當我在找資料的時候,只要是CSDN跟知乎我都會點
進去看一下,許多時候都會有不錯的收穫。
4. reddit/MachineLearing ( https://www.reddit.com/r/MachineLearning/ )
reddit 的 Machine Learning 版裡面有許多的神人,還潛伏了許多論文的作者在裡面,
時不時會有一些很新的論文發表、成果發表還有許多有趣的討論在裡面,我覺得可以收藏
起來看。
5. 微博公眾號
好,我知道這部分爭議很大,如果真的很介意的可以跳過這一 part。
我完全沒有在用微博,但為了ㄧ些公眾號的訂閱我才開始使用。許多公眾號會把很新的
AI 新知、或是一些知識整理放出來,雖然品質參差不齊,但也不得不說有時候真的能撿
到一些不錯的好文章。另外,覺得閱讀reddit 全英文資料很吃力的,有時候大概在
reddit 上面發表一兩天之後公眾號就有簡體中文的說明出來,我覺得有時候偷吃步其實
也是蠻可以的啦XDDDDD。還有一個公眾號會每天發送各種領域最新的論文內容出來,如果
閱讀論文速度很快的,可以從這樣的公眾號中拿到很多最新的論文資訊。
=======END=======
以上是我自己的一些學習資訊,也提供給大家參考看看
當然還有很多非科班出身必須要修的 例如資料結構跟演算法等等
我目前還沒有什麼概念,如果有人有推薦課程也希望不吝分享讓我知道一下
--
聽眾散去了,希爾伯特卻仍留在講台上,
他等著看自己是否已經運用有利的例子,優越的論證,
以及具誘惑力的23個問題,
塑造他期盼見到的未來.....
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.45.98.201 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/DataScience/M.1565639939.A.F2F.html
... <看更多>