NT 370 特價中
基本線性代數和微積分在 NumPy、TensorFlow 和 PyTorch 中的實戰應用
https://softnshare.com/machine-learning-data-science-foundations-masterclass/
「pytorch data」的推薦目錄:
- 關於pytorch data 在 軟體開發學習資訊分享 Facebook 的精選貼文
- 關於pytorch data 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的最佳解答
- 關於pytorch data 在 軟體開發學習資訊分享 Facebook 的最讚貼文
- 關於pytorch data 在 A PyTorch repo for data loading and utilities to be shared by the 的評價
- 關於pytorch data 在 5-Pytorch-Dataloader.ipynb - Colaboratory 的評價
- 關於pytorch data 在 How to normalize/transform data manually for DataLoader 的評價
- 關於pytorch data 在 Slicing PyTorch Datasets | Lewis Tunstall's Blog 的評價
- 關於pytorch data 在 Loading own train data and labels in dataloader using pytorch? 的評價
- 關於pytorch data 在 PyTorch Tutorial 09 - Dataset and DataLoader - Batch Training 的評價
- 關於pytorch data 在 Srresnet gan github pytorch - With Indo Nepal Safar 的評價
pytorch data 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的最佳解答
ตัวอย่างโค้ด AI (ปัญญาประดิษฐ์)
สำหรับงาน machine learning + deep learning โดยเฉพาะ
จริงๆ แล้วโค้ดหลายโปรเจค
ก็เคยแชร์โค้ดไปนานแล้ว
แม้ว่าจะเก่าหน่อย แต่ก็ยังใช้ได้
.
แต่เนื่องจากการเซทอัพโปรเจคในเครื่องตัวเอง
มันแสนยุ่งยาก เวอร์ชั่นไลบรารี่เปลี่ยนทีชีวิตเปลี่ยน
ผมเลยทำตัวอย่างการเขียนไว้บนเว็บ (colab)
เพื่อนๆ จะได้ลองศึกษากันได้ไปเลย
สามารถ Ctrl+C และ Ctl+v เอาไปใช้ได้
แต่ขอให้เครดิตกันก็พอ
.
อันนี้เป็นเพียงบางส่วน
ส่วนโปเจคที่เหลือเดี่ยวจะมาทยอยอัพเดตในโพสต์นี้แหละ
.
☑ พื้นฐานเขียนโปรแกรมของเด็กม.ต้น ถ้าไม่มีก็เขียน AI ไม่ได้นะ
https://colab.research.google.com/drive/1rm-kW7Nh5q3kk9JsnvBea2oUr42W9GIF
.
☑ พื้นฐาน Tensorflow
https://colab.research.google.com/drive/1iX9d2bl1ogh2qo2U-NTot_XuVbfAqKi9
.
☑ พื้นฐาน PYTorch
https://colab.research.google.com/drive/1BtVCWpwWovcVqkvEX5HaUAIyUOlekC0m
.
☑ พื้นฐาน Pandas (Dataframe)
https://colab.research.google.com/drive/1LpF3_oz2QIqBIkc1Q8opZyVzujW6Jsq2
.
☑ พื้นฐาน numpy ( อาร์เรย์หลายมิติ)
https://colab.research.google.com/drive/1u93d1Tm60YCKUY6CLGz9242NdQNWAQEA
.
☑ พื้นฐาน matplotlib เอาไว้พล็อตกราฟ
https://colab.research.google.com/drive/1BPi8jv--sKUSu9apCdYziDptHMtBY_16
.
☑ Basic machine learning concept ตั้งแต่
Regression, Logistic Regression, Decision Tree, Support Vector Machine (SVM), Naive Bayes, K-NN (K-Nearest Neighbors), Kmeans และอื่นๆ
https://colab.research.google.com/drive/1ZRMW3fXGWUvkeFPM07qtFXoSbLmuMpO1
.
☑ ตัวอย่าง deeplearning การเรียนรู้ขั้นสูง ได้แก่ neural network, CNN, RNN จากภาพตัวเลข
https://colab.research.google.com/drive/1KsGnaw9jE4wnmXK2mf2C4-Ylnj6nXbFw
.
☑ AI สัญชาติไทยจาก NECTEC ได้แก่
- BASIC NLP: ประมวลผลภาษาไทย
- TAG SUGGESTION: แนะนำป้ายกำกับ
- MACHINE TRANSLATION: แปลภาษา
- SENTIMENT ANALYSIS: วิเคราะห์ความคิดเห็น
- CHARACTER RECOGNITION: แปลงภาพอักษรเป็นข้อความ
- OBJECT RECOGNITION: รู้จำวัตถุ
- FACE ANALYTICS: วิเคราะห์ใบหน้า
- PERSON & ACTIVITY ANALYTICS: วิเคราะห์บุคคล
- SPEECH TO TEXT: แปลงเสียงพูดเป็นข้อความ
- TEXT TO SPEECH: แปลงข้อความเป็นเสียงพูด
- CHATBOT: สร้างแช็ตบอต
colab.research.google.com/drive/1LRPpzzwJwLIZIy3t7CxljhDjgLq-Z1Ha
.
☑ แยกแยะภาพจากโจทย์ Image Net ของโมเดลชื่อดัง เช่น Xception, VGG16, VGG19, ResNet50 และ InceptionV3
(รอก่อน)
.
☑ ใช้ AI ตัดคำในภาษาไทย
https://colab.research.google.com/drive/1tLrKRFR6i4TAzrbJ8wgsp4aihfWnMgnT
.
☑ Principal_Component_Analysis (PCA)
https://colab.research.google.com/drive/1FoGtB5xW1aWeQ7hlTmuB1AhXuFMx-jTo
.
☑ genetic algorithm :
อัลกอริทึมที่มีแรงบันดาลใจมาจากทฤษฎีวิวัฒนาการจากชีววิทยาของ ชาลส์ ดาร์วิน
เพื่อหาเส้นทางสั้นที่สุดในการเดินทางข้าม 20 จังหวัดของประเทศไทย
(รอก่อน)
.
☑ การใช้ AI ตรวจจับวัตถุในรูปภาพ Object Detection โดยใช้ imageai
https://colab.research.google.com/drive/1uQnZfPlRhplvcZKWiXn1jeytJIFEVLkV
.
☑ ใช้ AI ตรวจจับวัตถุในรูปภาพ โดยใช้ pixellib
https://colab.research.google.com/drive/1llWzReE3rS9wDfSGGm8M7RQ25jeEfSIi
.
☑ ตัวอย่าง API ของ Google เป็น tensorflow
https://colab.research.google.com/drive/12K-4uQ1tAvOukLb1-lwXx4bnXkeQupTk
.
☑ การใช้ AI ของ Facebook ตรวจจับวัตถุในรูปภาพ Object Detection , Segmentation, Pose Estimate
https://colab.research.google.com/drive/1jnWFADFdZHz1LSyfXVKHY3fIwuY5F_uo
.
☑ ใช้โมเดล Mask RCNN ตรวจจับวัตถุในรูปภาพ Object Detection , Segmentation
https://colab.research.google.com/drive/1JGRIMQ1YSdMXkEZdC6QNGbI722tEQJTE
.
☑ การใช้ AI ตรวจจับการเคลื่อนไหวของมนุษย์แบบเรียบไทม์ (real time)
https://colab.research.google.com/drive/1zWplcKN6ElL1eJmwKj3IqGFy3gg9Neus
.
☑ การใช้ AI จำใบหน้าคนในรูป ในวีดีโอ
https://colab.research.google.com/drive/1MnypOHemKhMEXCaWOgm6-ViYqF7GENWH
.
☑ หาจุด landmarks บนใบหน้าแบบ 2 มิติกับ 3 มิติ
https://colab.research.google.com/drive/1MDRYnhhPb2l3w0QIjV9beuc26Ng5BOPc
.
☑ การใช้ AI ตรวจจับภาพโป้ 18+ ในรูป หรือแม้กระทั่งภาพการ์ตูนก็ทำได้
https://colab.research.google.com/drive/1aFQgXH9WAvA_aJiZU4GZppWrLnZNJ7Hh
.
☑ การใช้ AI แต่งประโยคขึ้นมาเอง
https://colab.research.google.com/drive/1lZoaSLo2Ip-mlBNUFpjKhVAPWDenbRCu
.
☑ Google Translate API
ตัวอย่าง Python
https://colab.research.google.com/drive/1aca28YHet8DZ3jw-3wCx-Y40XR-6hpDJ
ตัวอย่าง JavaScript
https://github.com/adminho/javascript/blob/master/examples/google_translate/translate_general.html
.
☑ การใช้ AI วินิจฉัยโรค Covid-19 จากภาพเอกซ์เรย์ปอด
https://colab.research.google.com/drive/11ohI5nJiLVc23t2LRUfUmOYBvPYHJDnX
.
☑ ใช้ AI ตรวจจับภาพใบหน้าคนถูกแต่งด้วย Phtotoshop หรือไม่
https://colab.research.google.com/drive/1y4zN4AHhx0NYYx7szfW6C5aWsFdZZvml
.
☑ ใช้ AI วาดรูปเลียนแบบศิลปินชื่อดัง ( Artistic style)
(รอก่อน)
.
☑ ใช้ AI เขียนหนังสือภาษาไทย
(รอก่อน)
.
☑ การนำเอา AI มาใช้ในตลาดหุ้นไทย
https://github.com/adminho/trading-stock-thailand
.
☑ นำ AI มาเล่นเกมเอง
(รอก่อน)
.
☑ การรู้จำเสียงพูดโดยใช้ Google API (Speech Recognition)
- ใช้ javascript+HTML
https://github.com/adminho/javascript/tree/master/examples/speech-recognition/web
- ใช้เสียงควบคุมเกม https://github.com/adminho/javascript/tree/master/examples/speech-recognition/game
.
☑ ใช้ AI แต่งดนตรีเอง
(รอก่อน)
.
.
.
++++ประชาสัมพันธ์+++++++++++++
หนังสือ "AI ไม่ยาก เข้าใจได้ด้วยเลขม.ปลาย"
จะเข้าร่วมแคมเปญลดราคาในวันที่ 7 เดือน 7
ในช่วงวันที่ 7-11 ก.ค. 2564
ของแพลทฟอร์ม meb - mobile e-books
.
อุดหนุนกันได้ที่
👉 https://www.mebmarket.com/index.php?action=BookDetails&data=YToyOntzOjc6InVzZXJfaWQiO3M6NzoiMTcyNTQ4MyI7czo3OiJib29rX2lkIjtzOjY6IjEwODI0NiI7fQ
.
ถ้าซื้อผ่าน Web,Android ราคาปกติ 295 บาท เหลือ 221 บาท
ถ้าซื้อผ่านราคา Apple ราคาปกติ $10.99(฿329) ลดเหลือ $7.99(฿249)
.
.
วิธีการซื้อ
1) สมัครเป็นสมาชิกเว็บ www.mebmarket.com ก่อน
2) ดาวน์โหลดแอพของ meb ค้นหาชื่อ meb นี้แหละ (ถ้าจะอ่านบน desktop ก็ดาวน์โหลดโปรแกรมาก่อน)
3) แล้วสั่งซื้อ โอนเงินก็ตามรายละเอียดที่เว็บแนะนำครับผม
4) จากนั้นก็ใช้โปรแกรม หรือแอพของ meb เปิดอ่านหนังสือครับผม
5) ถ้ามีปัญหาติดต่อทางทีม support@mebmarket.com เขาจะให้คำตอบคำผม
(พอดีฝากขายที่นี้ด้านเทคนิคพวกนี้ผมจะไม่รู้ครับ)
.
ถ้าเพื่อนๆ ที่อ่านหนังสือผ่านระบบ iOS
เวลาจะชำระเงิน ไม่ควรจ่ายผ่านบัตร
เพราะจะซื้อหนังสือแพงขึ้นครับ
.
แนะนำให้ชำระเงิน
- โดยให้เปิดเว็บ https://www.mebmarket.com
- แล้ว login ด้วย username เดียวกับที่เราใช้ใน app บน iOS
- หลังจากนั้นก็เลือกซื้อหนังสือปกติ
.
ซื้อเสร็จแล้วมันจะไปโผล่ใน app บน iOS
จากนั้นเพื่อนสามารถเข้าใช้งานด้วย username และ password อันเดียวกันกับหน้าเว็บเลยครับ
จะซื้อได้ในราคาที่เห็นตามเว็บนี้ (ไม่แพง)
.
.
สำหรับวิธีอ่านอีบุ๊กเล่มนี้
ก็ต้องเลือกโปรแกรม/แอพ ให้เหมาะกับระบบที่เราใช้อยู่
วิธีอ่านอีบุ๊กก็ตามลิงก์ต่อไปนี้
https://docs.google.com/document/d/e/2PACX-1vSI4hZgymHgbqhX3CA6anA_18wRy-iXU9oIlupUr-KwAWvJyxI9zdLrJcPUW77xz8lbvRFfW10747Oe/pub
.
.
👉 สารบัญ:
https://drive.google.com/file/d/1L6-XYMVCWYNkvYXZYP9kOuzAIzPfHuaf/view?usp=sharing
.
👉 ตัวอย่างแต่ละบท
ตัวอย่างบทที่ 1 แนะนำ AI
📗 https://drive.google.com/file/d/19kzbuRtN14eDEYhNewBh4ZUCa6sexaIf/view?usp=sharing
.
ตัวอย่างบทที่ 3 แนะนำ machine learning
📗 https://drive.google.com/file/d/1pe8ty5hVZS0M3zGZe5WliOOTm6Cqv1Ti/view?usp=sharing
.
ตัวอย่างบทที่ 4 เรื่อง linear regression
📗
https://drive.google.com/file/d/1ju_wF6c9CNiYWfSzIIuqV9aUuEa4eurh/view?usp=sharing
.
ตัวอย่างบทที่ 8 เรื่อง CNN
📗 https://drive.google.com/file/d/1lGqsfXs16mV2IbEJx-4IgDslaHOut1kC/view?usp=sharing
.
ตัวอย่างบทที่ 9 เรื่อง RNN, LSTM
📗 https://drive.google.com/file/d/1dxEhj7syoXFAfQB9bqmwXGrfhgz3M7GQ/view?usp=sharing
.
ตัวอย่างบทที่ 10 เรื่อง Deep Q Learning
📗 https://drive.google.com/file/d/129-FPDP-9FJrMNsVqWMJdER762jOzs9G/view?usp=sharing
.
ตัวอย่างบทที่ 11 เรียนรู้แบบไร้ครูผู้สอน
📗 https://drive.google.com/file/d/15njvUq8Vbq3SRA-PHxVGq8Isr1cL3F3d/view?usp=sharing
.
👉 youtube: https://youtu.be/rLo-XdToGFI
👉 รีวิวหนังสือจากผู้เขียนตำราเทพเอกเซล https://www.facebook.com/thepexcel/posts/1424798431031509/
.
.
✍เขียนโดย โปรแกรมเมอร์ไทย thai programmer
pytorch data 在 軟體開發學習資訊分享 Facebook 的最讚貼文
🔥 NT 330 特價中 ( 最後一天 )
基本線性代數和微積分在 NumPy、TensorFlow 和 PyTorch 中的實戰應用
https://softnshare.com/machine-learning-data-science-foundations-masterclass/
pytorch data 在 5-Pytorch-Dataloader.ipynb - Colaboratory 的推薦與評價
If the data set is small enough (e.g., MNIST, which has 60,000 28x28 grayscale images), a dataset can be literally represented as an array - or more precisely, ... ... <看更多>
pytorch data 在 A PyTorch repo for data loading and utilities to be shared by the 的推薦與評價
Why composable data loading? Over many years of feedback and organic community usage of the PyTorch DataLoader and DataSets, we've found that: The original ... ... <看更多>