時尚依靠AI改造其業務模型,以更加綠色
2020年3月4日
由柏拉圖重新發布
AI趨勢員工
一家洛杉磯時裝屋正在使用AI改變時尚行業的商業模式,該行業在歷史上與未售出的存貨相關的風險很高。
靈巧 為了響應客戶在其網站上的投票,該公司正在使用AI來定制限量發行的商品,稱為“ drops”。
Finesse創始人兼首席執行官Ramin Ahmari
“如今的時尚每個月都會創造成千上萬的作品。 我們之所以創建這個品牌,是因為我們希望時尚更具可持續性。” 靈巧,在最近的帳戶中 運氣.
可持續發展是時尚界許多年輕企業家的主題,他們致力於應用技術以更好地利用 進行預測,定價和運營研究以減少浪費。
Finesse在一月份完成了4.5萬美元的種子輪融資。 該公司現在正在其網站上列出從街頭服裝到禮服的八個限量編輯的商品,這些商品是通過分析包括社交媒體趨勢和客戶投票在內的數據精心選擇的。 這個想法是生產最有可能小批量銷售的產品。 “我們只會有出售的東西,”艾哈邁利說。
他的職業生涯始於華爾街,在摩根士丹利,貝萊德和對沖基金TwoSigma的暑期實習中,他探索了數據分析。 他說:“我們將查看財務數據並做出數百萬美元的決策。” “但我們不會以相同的方式看待社交數據,儘管它具有很強的表現力,並且可以告訴我們哪些類型的項目值得投資。”
他以這個想法為基礎發起了Finesse,該活動密切跟踪社交媒體,在線博客和Google趨勢上的定量研究和文本數據。 他說:“這是模式匹配,試圖弄清非結構化的社交數據。” “我們汲取了靈感,並以此為基礎進行了生產。”
該公司使用3D虛擬原型製作產品設計,而無需物理樣品。 它使用收集到的數據來預測製造多少,隨著收集的數據的增加,這種預測會隨著時間的推移而逐漸完善。
數據科學家為時裝業製定了可持續發展基準
一位可持續發展顧問認為,時裝行業處於很好的位置,可以像Finesse一樣利用AI技術趨勢以從中受益。
阿姆斯特丹數據收集中心的經理Joanneke Meijer
“我們相信,通過確定可持續發展的品牌,行業可以朝著可持續發展的方向發展。” 開放數據科學。。 她是一位經驗豐富的數據科學顧問,專注於預測,定價,運營研究和文本挖掘。 “我們使用抓取,人工智能,自然語言處理和 可解釋性 比目前的方法更快地提供更多可持續的服裝信息。”她說。
為了建立基準,她設計了一種自動方法,從網站,博客和書籍中收集有關服裝品牌信息的信息,以期在可持續性方面有所作為。 她說:“在數據科學中,您通常從需要大量清理的數據集開始。” 對於時裝項目,她的團隊首先使用Google搜索API創建了一個包含2,000多個服裝品牌的數據庫。 為了建立監督模型,團隊收集了可持續和不可持續服裝品牌的培訓實例。
從這個小的數據集中,團隊訓練了一個AI模型。 使用自然語言處理來準備從網站獲得的文本以進行分類。 文本中的某些單詞用數字表示,帶有線性核的支持向量機經過訓練可以分配可持續性標籤。 “我們必須精明地抓取正確數量的數據,” Meijer說。
首次檢查數據產生的詞云表明,可持續品牌與其他品牌之間存在明顯差異。 該團隊強調了可解釋的結果,以進一步信任模型的預測。
“可解釋性 對於人們而言,至關重要的是要相信結果。”邁耶說。 “就我們而言,這還提高了預處理的質量。 結果,我們現在有了幾款精度超過80%的模型。”
為了宣傳時尚可持續性基準,Meijer和她的團隊建立了一個網站, goodbase.ai。訪客可以按服裝品牌進行搜索,查看該品牌的綠色指示符是否為可持續性,紅色指示符為不可持續。
成為基準的因素包括:衣服是否由有機材料製成; 品牌工廠的勞動條件; 品牌供應鏈造成的污染量; 和回收政策。
接管行業的綠色時尚實踐
Fashion負責 92萬噸固體廢物 來自的數據顯示,該行業每年都被傾倒在垃圾填埋場中,據信該行業是世界供水的第二大消費者,佔人類碳排放量的10%。 塔塔諮詢服務公司 該公司AI技術戰略情報負責人Shilpa Rao撰寫。
結果,綠色時尚開始佔據主導地位。 “ R零售商可以通過投資於可持續時尚技術並在時尚價值鏈中應用AI等較新的技術來確保其客戶在保持運營盈利的同時保持良好的外觀,”她說。
時裝行業的新綠色實踐包括:用於製造,使用3D建模;以及用於採購,合併所需的材料成分; 在設計上,幫助個性化量身定制的服裝並創建新的組合; 為了訂購,使用AI根據社交和其他數據預測趨勢,以幫助購買正確的數量。
附圖:時裝行業正在轉向使用AI,以幫助AI變得更具可持續性,減少浪費並為客戶實現更高的個性化。 (來源:蓋蒂圖片社)
資料來源:https://zephyrnet.com/zh-TW/%E4%BE%9D%E9%9D%A0AI%E6%94%B9%E8%AE%8A%E5%85%B6%E5%95%86%E6%A5%AD%E6%A8%A1%E5%BC%8F%E4%BB%A5%E6%9B%B4%E5%8A%A0%E7%B6%A0%E8%89%B2%E7%9A%84%E6%99%82%E5%B0%9A/
同時也有23部Youtube影片,追蹤數超過4萬的網紅吳老師教學部落格,也在其Youtube影片中提到,Big Data資料加值應用研習班課程分享(105/2/16) Big Data海量資料的分析概說: Big Data資料加值應用與相關範例 如何取得Big Data的方式? 開放資料範例 內政部實價登錄、YAHOO股市資料 GOOGLE表單 範例:GOOGLE試算表複選...
r語言向量 在 李開復 Kai-Fu Lee Facebook 的最佳解答
分享好文,中學生要學電腦嗎?
作者:創新工場CTO、人工智慧工程院執行院長 王詠剛
文章来自半轻人微信公众号(ban-qing-ren)
………………………………
朋友的孩子高中剛畢業,已拿到美國頂尖大學(非電腦專業)的錄取通知。疫情影響,不知何時才能去學校報到。孩子想抓緊學習一下程式設計,為大學打好基礎。這孩子找我聊了一個多小時,從如何學程式設計,聊到非電腦專業和電腦專業的路徑差異,又聊到如何從不同角度認識電腦與程式設計。聊得比較寬泛,不知是否對這孩子有用。
回想我自己的高中時代:那時雖迷戀程式設計,卻完全沒有懂行的人指導。在我們那個四線城市的廠礦中學裡,開設電腦興趣課的老師知道的資訊還沒我多。我高一時跑到北京中關村逛街,卻完全沒意識到中國第一代頂尖程式師當時就在我身邊的低矮辦公樓裡寫代碼(這話說得並不準確,比如求伯君那年就主要是在珠海做開發),鼎鼎大名的UCDOS、WPS、CCED就出自他們之手……我在當時街邊的一家書店(位置似乎就在今天的鼎好大廈對面)買到了許多種印刷品質極低劣的電腦圖書。用今天的標準看,那就是一批盜版影印或未授權翻譯的國外圖書。可那批書竟成了我高中時代最寶貴的程式設計知識來源。
顯然,我在高中時根本就是野路子學電腦。現在後悔也沒用,當時我的眼界或能觸及的資源就那麼多。如果能穿越回30年前,我該對喜歡程式設計的自己說些什麼呢?這些年,我與世界上最好的一批程式師合作過,也參與過世界上最有價值的軟體系統研發——我所積累的一些粗淺經驗裡,有哪些可以分享給一個愛程式設計的中學生?
【問題1】中學生要不要學電腦?
當然要!
每個中學生都要學。只不過——建議大部分中學生使用“休閒模式”,小部分(不超過10%)中學生使用“探險模式”。
啊?兩個模式?那我該進入哪個模式?⟹請跳轉至【問題2】
【問題2】選哪個模式?
你癡迷電腦嗎?比如,你玩遊戲時會特別想知道這遊戲背後的代碼是如何編寫的嗎?再比如,就算老師家長不同意你學電腦,甚至當著你的面把電腦砸了,你也要堅持學電腦嗎?如果是,恭喜你進入“探險模式”⟹請跳轉至【問題200】
你對數學有興趣嗎?比如,你看到街邊建築的曲線,就會在腦子裡琢磨曲線對應的函數或方程嗎?每當手裡攥著幾粒骰子,你就會不由自主地計算概率嗎?如果是,歡迎進入“探險模式”⟹請跳轉至【問題200】;當然,如果有些猶豫,也可以先進入“休閒模式”⟹請跳轉至【問題100】
即便你對電腦和數學興趣不大,家長、老師還是強烈建議你學電腦嗎?就算你一百個沒時間一千個不願意,家長、老師還是會逼著你學電腦嗎?如果是,建議你主動進入“休閒模式”並向家長、老師彙報說“我已經按照前谷歌資深軟體工程師的專業建議在認真學程式設計了”⟹請跳轉至【問題100】
其他情況,一律進入“休閒模式”。⟹請跳轉至【問題100】
【問題100】休閒模式 | 主要學什麼?
“休閒模式”將電腦視為我們生活、工作中的必備工具,主要學習如何聰明、高效、優雅地使用計算設備。這裡說的計算設備,包括所有形式的電腦、手機、遊戲機、智慧家電以及未來一定會進入生活的自動駕駛汽車。
什麼什麼?你已經會用電腦、會玩手機、會打遊戲了?別著急,慢慢往下看。
【問題101】休閒模式 | 我會用搜尋引擎嗎?
我知道你會用百度搜習題答案。但,習題答案不是知識。你會用搜尋引擎來搜索和梳理知識嗎?請試著用電腦和你喜歡的搜尋引擎來解決如下兩個問題:
(1)圓周率𝜋的計算方法有多少種?每種不同的計算方法分別是由什麼人在什麼時代提出的?借助電腦,今天人們可以將圓周率𝜋計算到小數點後多少位?將圓周率𝜋計算到小數點這麼多位元,一次大概需要花掉多少度電?
(2)全球大約有多少個廁所?在發展程度不同的國家,分別有多少比例的人可以享用安裝了抽水馬桶的衛生廁所?為什麼比爾·蓋茨曾大力推動一個設計新型馬桶的研發專案?比爾·蓋茨的公益組織在這個專案上大約花費了多少資金,最終收到了多大的效果?
如果你沒法快速得到上述問題的全部答案,那就給自己設一個小目標:一個月內,學會用搜尋引擎系統地獲取、梳理一組知識點的全部技巧。
【問題102】休閒模式 | 接下來學什麼?
建議學好典型的工具軟體。比如,我知道你會用Office了,但用Office和用Office是很不一樣的。對生活、學習、工作來說,學好、學透一個工具軟體比鑽研程式設計技巧更實用。
你會用Excel來管理班級公益基金的預算和實際收支情況嗎?
你會用Excel做出過去20年裡全球大學排名的演變趨勢圖嗎?
你會用Word排版一篇中學生論文嗎?論文中的圖表和最後的參考文獻部分該如何排版?
你會用Word編排一份班級刊物,包含封面、扉頁、目錄、插圖頁、附錄、封底等部分,可以在列印後直接裝訂成冊嗎?
PowerPoint呢?你有沒有研究過蘋果公司發佈會上那些幻燈片的設計?當約伯斯(多年以前)或蒂姆·庫克站在幻燈片前的時候,他們的演講思路是如何與幻燈片完美結合的?
還有哦,別忘了學學如何為數碼照片做後期,如何用電腦或手機剪視頻,如何為剪輯好的視頻配字幕,如何將照片、音樂、視頻等素材結合起來,做出一段吸引人的快手/抖音短視頻。
最後,抽空玩玩那些設計精妙的遊戲吧,比如《紀念碑穀》、《塞爾達傳說:曠野之息》之類;同時,遠離那些滿屏廣告,或者一心騙你在遊戲裡充值花錢的垃圾。
【問題103】休閒模式 | 不學學知識嗎?
當然要學知識。下面每種實用的電腦知識都夠大家學一陣子了。
(1)色彩知識:你知道同一張數碼照片在不同品牌的手機螢幕上、不同的電腦螢幕上、不同的智慧電視上顯示時,為什麼經常有較大色差嗎?你知道有一些色彩只適合螢幕顯示,不適合列印輸出嗎?你知道軟體工具裡常用的RGB、HSL之類的色彩空間都是什麼意思嗎?如何在設計PowerPoint幻燈片時選擇一組和諧美觀的色彩?
(2)字體知識:你知道什麼是襯線字體,什麼是無襯線字體嗎?你知道網頁中常用的英文字體都有哪些嗎?你知道商務演講時最適用于幻燈片的英文字體有哪些嗎?你知道電腦和手機常用的黑體、宋體、仿宋體、楷體等中文字體分別適合哪些實際應用場合嗎?你會將不同字體混排成一個美觀的頁面嗎?
(3)網路知識:你知道5G是什麼嗎?你知道5G和4G在通信頻寬、通信距離上的具體區別嗎?你知道什麼是路由器,什麼是防火牆嗎?你知道如何配置路由器,如何配置防火牆嗎?微信或QQ聊天時,對方發的文字、語音或視頻是如何傳送到你的手機上的?
(4)應用知識:淘寶中搜索得到的商品資訊是從哪裡來的?商品是按什麼方式排序的?為什麼購物APP經常會推薦給你一些曾經買過、看過的商品?你知道如何為自己建立個人網站嗎?你知道如何管理微信公眾號嗎?
(5)安全知識:你知道網路上的釣魚攻擊是怎麼回事兒嗎?你知道什麼是電腦漏洞嗎?你知道駭客為什麼想把一大批受攻擊的電腦變成可以遠端操控的傀儡機嗎?你知道為什麼現在很多手機APP都要通過短信發送驗證碼嗎?如果驗證碼被壞人截獲,你會面臨哪些風險?
這裡只是舉例。實用的電腦知識還有很多。大家可以自己發掘。
【問題104】休閒模式 | 我需要學程式設計嗎?
可以學,但不是必須。即便學,也只需要根據自己的需要,學那些最能幫你解決現實問題的部分。
【問題105】休閒模式 | 我該學什麼程式設計語言?
在“休閒模式”裡,電腦就是工具,程式設計也是工具,夠用就好。學什麼程式設計語言,完全看你想要電腦幫你做什麼。
• 如果你想對資料處理有更多自主權,那不妨學學Python;
• 如果你想做簡單的交互演示程式,那就先把JavaScript學起來;
• 如果你想更好、更快地寫論文,那不妨學學LaTeX(什麼什麼,LaTeX不是程式設計語言?你太小看LaTeX了);
• 如果你想學做簡單的手機APP,那麼,Android手機就學Java,蘋果手機就學Swift好了;
• 如果你只想知道程式設計是怎麼回事,那……從Python或JavaScript開始就行。其實,跟五六歲的小朋友一起學學Scratch圖形程式設計也不錯。
【問題106】休閒模式 | 我需要學人工智慧嗎?
在“休閒模式”裡,最需要學的不是“人工智慧的實現原理”,而是“什麼是人工智慧”,以及“人工智慧能做什麼,不能做什麼”。
• 在手機上試一試,人工智慧做語音辨識時能做到什麼水準?哪些話容易識別,哪些話不容易識別?
• 打開機器翻譯軟體,試一試哪些資訊翻譯得好,哪些資訊翻譯得不好?
• 手機上的拍照軟體一般都有人臉識別功能。試一試人臉識別在什麼場景下做得好,什麼場景下做得不好?
• 找一部講人工智慧的科幻電影,用自己的判斷解讀一下,電影裡哪些技術有可能成為現實,哪些技術存在邏輯矛盾。
【問題107】休閒模式 | 推薦什麼參考書、參考文獻?
書不重要,豆瓣評分7分以上的電腦應用、程式設計甚至科普類圖書都可以拿來翻翻。
直接在知乎裡搜索你想瞭解或學習的知識點可能更有效率。
如果你意猶未盡,覺得自己剛活動開筋骨,還想挑戰更高層次,歡迎進入“探險模式”。⟹請跳轉至【問題200】
否則,“休閒模式”到此結束。⟹請離開此問答
【問題200】探險模式 | 主要學什麼?
“探險模式”需要有挑戰精神。電腦科學的世界技術演進快,脈絡複雜,要想在探索時不迷路,你得通過有順序、有系統地學習電腦知識,慢慢構建出一張可以在未來幫你走得更遠的思維地圖來。
在“探險模式”裡,電腦就不止是一件能快速計算的工具了。電腦更像是我們大腦的一種延伸。這既包括認知能力的延伸,也包括認知邏輯的延伸。隨著學習深入,大家會逐漸體會到電腦所具有的多維度能力:
電腦是一種可以表示不同類型資訊(數、符號、文字、語音、圖像、視頻、虛擬空間、抽象邏輯)的“資訊管理機”;
同時,電腦也是一種可以連續執行指令以完成特定的資訊處理任務的“指令處理機”;
同時,電腦還是一種可以在知識與邏輯層面完成特定推理任務的“知識推理機”;
同時,電腦也是一種可以從人類給定的資料或自我生成的資料中總結規律,建立模型,自主完成某些決策的“智慧學習機”。
“探險模式”的目標就是盡可能準確地認識電腦,掌握有關電腦運行的最基本規律。有了這些基礎。未來在大學期間或工作中,你就能更容易地設計電腦軟硬體系統,或是設計出碳基大腦(人類)與矽基大腦(機器智慧)之間的最佳協作方案。
【問題201】探險模式 | 我的英語水準足夠嗎?
蘋果每年秋季的新品發佈會,不加字幕的話,你能聽懂多少?
能聽懂大部分:建議在學習電腦的過程中,盡可能使用英文教材、英文文檔。
能聽懂小部分:建議將原來準備學電腦的時間,分出一部分來學英語。
只能聽懂“你好”“再見”之類:⟹請離開此問答。然後,把原來準備學電腦的時間用於學英語,六個月後再回來。
【問題202】探險模式 | 我的數學水準足夠嗎?
如果你是數學和數學應用小能手——較複雜的數學問題總能快速找到核心思路,或快速簡化為簡單問題;很容易就能將抽象概念映射到具體的數學圖形,或將數學問題與相應的現實問題關聯在一起:請繼續探險之旅。
如果你應付正常數學課程感到吃力:建議將原來準備學電腦的時間,分出一部分來學數學。
如果你還搞不清楚什麼是方程、函數、集合、概率……:⟹請離開此問答。然後,把原來準備學電腦的時間用於學數學,六個月後再回來。
【問題203】探險模式 | 為什麼強調英語和數學?
(1)統計上說,最好的電腦參考資料大都是英文寫的,最好的電腦課程大都是用英文講的,最新的電腦論文大都是用英文發表的。
(2)函數、方程、坐標系、標量、向量、排列組合、概率這些中學數學裡會初步學習到的數學知識,是電腦科學的基礎。
【問題204】探險模式 | 電腦知識那麼多,正確的學習順序是什麼?
最重要的順序有兩個。建議先從順序一開始,學有餘力時兼顧兩個順序。
順序一:自底向上,即,自底層原理向上層應用拓展的順序。
電腦原理的基礎知識:
為什麼每台電腦(包括手機)都有CPU、記憶體和外部設備?
(馮·諾依曼體系結構的)記憶體中為什麼既可以存儲資料,也可以存儲指令?
CPU是如何完成一次加法運算的?
程式設計語言的基礎知識:
資料類型,值,變數,作用域……
語句,流程控制語句……
過程、方法或函數,類,模組,程式,服務……
編譯系統的基本概念:
電腦程式是如何被解釋或編譯成目標代碼的?
演算法和資料結構的基礎知識:
陣列,向量,鏈表,堆,棧,二叉樹,樹和圖……
遞迴演算法,排序演算法,二叉樹搜索演算法,圖搜索演算法……
應用層的基礎知識:
為什麼電腦需要作業系統?設備驅動程式是做什麼的?
網路通信的基本原理是什麼?流覽器是怎麼找到並顯示一個網頁的?
資料庫是做什麼用的?
虛擬機器是怎麼回事?
人工智慧系統的基礎知識:
先熟悉些線性代數、概率和數學優化的基礎知識。
什麼是機器學習?從簡單的線性回歸中體會機器學習的基本概念、基本思路。
什麼是神經網路?什麼是深度神經網路?為什麼神經網路可以完成機器學習任務?
如何使用PyTorch或TensorFlow實現簡單的深度學習功能?
順序二:自頂向下,即,自頂層抽象邏輯向下層具體邏輯拓展的順序。
• 電腦的本質是什麼?
• 什麼是圖靈機?什麼是通用圖靈機?
• 什麼是讀取﹣求值﹣輸出迴圈(Read–eval–print Loop,REPL)?
如何用自頂向下的方式理解(解析、解釋、編譯)一段程式碼?
• 靜態語言和動態語言的區別?
如何理解變數與資料類型之間的綁定關係?
• 什麼是函數式程式設計?
程式設計語言中,函數的本質是什麼?
函數為什麼可以像一個值一樣被表示、存儲、傳遞和處理?
• 什麼是物件導向?
類的本質是什麼?
如何用物件導向的方式定義個功能介面?
如何依據介面實現具體功能?
• 什麼是事件驅動?
什麼是事件?事件如何分發到接收者?
如何在事件驅動的環境中理解代碼的狀態和執行順序?
【問題205】探險模式 | 如何提高程式設計水準?
在掌握基本知識體系的基礎上,學好程式設計只有一條路:多程式設計,多參加程式設計比賽,多做程式設計題,多做實驗項目,多找實習機會——其中,能參與真實專案是最有價值的。
【問題206】探險模式 | 該從哪一門程式設計語言學起?
我個人推薦的程式設計入門語言(可根據情況任選):
Python
Java
Swift
C#
JavaScript / TypeScript
Ruby
……
可能不適合入門,但適合後續深入學習的語言:
C
C++
Go
Objective-C
組合語言
機器語言(CPU指令集)
Shell Script
Lua
Haskell
OCaml
R
Julia
Erlang
MATLAB
……
【問題207】探險模式 | 如何選參考書和參考資料?
(1)強烈推薦的參考書和參考資料:
• MIT、Stanford、CMU、UC Berkeley這四所大學中任何一個電腦專業方向使用的教學參考書或參考資料。網上可以查到這些學校電腦專業方向的課程體系,有的學校甚至公開了課程視頻。其中往往會列舉參考書和參考資料連結。
• 維琪百科(英文)上的數學、電腦科學相關條目。
• Github上star數在1000以上的開原始程式碼和開來源文件。
(2)強烈推薦但須小心辨別的參考資料:
知乎上的數學、電腦科學相關條目。使用時需要格外注意三件事:
儘量只看高贊答案或高贊文章;
辨別並避開廣告軟文;
辨別並避開純抖機靈的故事或段子。
Stack Overflow上的程式設計問題解答:
自己動手實驗,辨別解答是否有效。
CSDN上的程式設計問題解答:
自己動手實驗,辨別解答是否有效。
(3)其他推薦的參考書和參考資料:
國內專業作者寫作的專業技術書籍(豆瓣評分7分以上的)。
大廠(Google、Facebook、Microsoft、Amazon、阿裡、騰訊、百度、頭條等)資深工程師的技術公號、專欄、博客等。
著名圖書系列:如O’Reilly的動物封面的系列圖書(請注意最新版本和時效性)。
國內翻譯的著名技術圖書(譯本在豆瓣評分7分以上的)。
(4)儘量避免的參考書和參考資料:
• 已經過時的圖書或參考資料。
• 作者或譯者人數比章節數還多的專業圖書。
• 百度百科上的數學或電腦科學相關資料。
什麼什麼?你這篇問答居然沒有推薦一本具體的圖書?是,沒錯。如果你覺得即便有了上面的線索,自己還是找不到好書好資料,那也許你還是適合“休閒模式”⟹請跳轉至【問題100】
r語言向量 在 元大期貨招財鈴-方昭齡 Facebook 的最讚貼文
【時間序列與量化交易研討會】
🏆近幾年有越來越多的投資人朝向量化交易(程式交易)的方式進行投資操作,尤其以期貨將近24小時的交易市場及全球性商品選擇更是合適。
🏅元大智能網:
元大期貨提供元大MultiCharts將開發者的投資想法轉換成自動化策略,並利用歷史資料回溯及最佳化功能進行策略驗證,找出最適合您的交易策略,此外元大智能網提供超過三十支智能策略,讓不會寫程式的投資人也能輕鬆運用。
http://bit.ly/2FTuHTv
🏅元大Smart Api:
透過R語言及或是Python撰寫,讓投資人輕鬆串接行情報價及交易指令,
http://bit.ly/2G65AwT
🏅台股牛熊權:
小資投資新選擇,千元參與大盤漲跌,並且透過50倍的槓桿、當沖、雙向交易等等特色,帶給投資人更多元的交易選擇。
https://www.yuantafutures.com.tw/elo
r語言向量 在 吳老師教學部落格 Youtube 的最佳解答
Big Data資料加值應用研習班課程分享(105/2/16)
Big Data海量資料的分析概說:
Big Data資料加值應用與相關範例
如何取得Big Data的方式?
開放資料範例
內政部實價登錄、YAHOO股市資料
GOOGLE表單
範例:GOOGLE試算表複選結果資料切割
如何處理與統計分析Big Data?
EXCLE統計函數
範例:黑名單篩選、樂透彩中獎機率
樞紐分析表
範例:銷貨系統分析
開放資料加值應用實例
範例:實價登錄、用EXCEL一鍵批次下載股市資料
EXCLE VBA(與R語言比較)
PowerPivot增益集
海量資料的分析工具-PowerPivot實作演練
視覺化數位儀表與報表–PowerView資料地圖實作
上課影音內容:
01_課程說明與參考書籍
02_問卷結果與檔案下載
03_大數據的定義與成功範例
04_範例_樂透彩機率統計函數說明
05_格式化前七名與VBA設定
06_前七名的VBA程式撰寫說明
07_樂透彩VBA程式說明
08_GOOGLE表單與複選結果切割
09_複選結果切割VBA程式說明
10_複選結果切割註解與按鈕相關
11_黑名單篩選查詢資料說明
12_黑名單篩選查詢VBA程式與進度列
13_台北市實價登錄範例VBA程式解說
14_批次下載股市資料程式說明與結尾
完整連結:
https://www.youtube.com/playlist?list=PLgzs-Q3byiYPsxtU9N_n81087ggNwggyK
與大數據課程的經驗
超過20年的程式設計與教學經驗(VBA、VB.NET、ASP.NET、JAVA、ANDROID、PHP等)
台北市公務人員訓練處:Big Data資料加值應用
新北市勞工大學:EXCEL VBA大數據自動化進階
東吳大學進修推廣部:EXCEL VBA 與資料庫雲端設計(初階與進階)
自強工業基金會:從Excel函數到VBA雲端巨量資料庫應用班
多年的實務與教學經驗所累積的課程範例,最短時間學會處理大數據,以提高效率,正確決策。
Big Data海量資料的分析概說:
根據維基百科:
大數據(英語:Big data或Megadata),或稱巨量資料、海量資料、大資料
指的是所涉及的資料量規模巨大到無法透過人工,在合理時間內達到擷取、管理、處理、並整理成為人類所能解讀的形式的資訊。
可用來察覺商業趨勢、判定研究品質、避免疾病擴散、打擊犯罪或測定即時交通路況等;這樣的用途正是大型資料集盛行的原因
維基百科定義
在一份2001年的研究與相關的演講中,麥塔集團(META Group,現為高德納)分析員道格·萊尼(Doug Laney)指出資料增長的挑戰和機遇有三個方向:
量(Volume,資料大小)
速(Velocity,資料輸入輸出的速度)
多變(Variety,多樣性),合稱「3V」或「3Vs」
另外,有機構在3V之外定義第4個V:真實性(Veracity)
大數據必須藉由計算機對資料進行統計、比對、解析方能得出客觀結果。
美國在2012年就開始著手大數據,歐巴馬更在同年投入2億美金在大數據的開發中,更強調大數據會是之後的未來石油。
巨量資料應用的成功案例
Google – 流感趨勢預測
Google發現,某些搜尋關鍵字有助於追蹤流感疫情發展,彙總搜尋資料,提供近乎即時的全球流感疫情趨勢預測
Google曾在美國的九個地區做了測試,發現此技術比聯邦疾病控制和預防中心提前7到14天準確預測了流感爆發
阿里巴巴將消費者數據轉化為企業獲利,小額貸款無需抵押和擔保,直接實現了網路數據的價值。截至2013年,阿里小貸累計獲貸客戶數64.2萬家,累計放款1,722億元人民幣
電視新聞與巨量資料結合,2014年春運(36億人次),百度利用巨量分析觀察大陸過年時人類的遷移行為,並以易懂的視覺化呈現在人們眼前
吳老師 105/2/15
台北市公務人員訓練處,big data應用,big data定義,big data是什麼,大數據分析教學,excel數據分析,excel數據圖表,大數據應用實例,大數據應用案例,開放資料應用,open data應用
![post-title](https://i.ytimg.com/vi/RuP8cX08uzM/hqdefault.jpg?sqp=-oaymwEbCKgBEF5IVfKriqkDDggBFQAAiEIYAXABwAEG&rs=AOn4CLDt1Vvu-eE3rRq3aq6YW4Ubw8iXPQ)
r語言向量 在 吳老師教學部落格 Youtube 的最讚貼文
Excel在大數據上的應用(進階函數與VBA)(105/5/20)
上課影音內容:
01_開場簡報說明
02_大數據課程理念與應用範例
03_範例1_GOOGLE試算表複選資料切割說明
04_範例2_樂透彩中獎機率統計函數說明
05_範例2與範例5_股市當日行情表說明
06_範例5_股市當日行情表(錄製巨集&新增工作表&刪除工作表)
07_範例5_股市當日行情表(增加下載功能)
08_範例5_股市當日行情表(增加進度顯示功能)
09_範例4_台北市實價登錄說明
10_建立Power View
完整連結:
https://www.youtube.com/playlist?list=PLgzs-Q3byiYPsxtU9N_n81087ggNwggyK
Big Data海量資料的分析概說:
Big Data資料加值應用與相關範例
如何取得Big Data的方式?
開放資料範例
內政部實價登錄、YAHOO股市資料
GOOGLE表單
範例:GOOGLE試算表複選結果資料切割
如何處理與統計分析Big Data?
EXCLE統計函數
範例:黑名單篩選、樂透彩中獎機率
樞紐分析表
範例:銷貨系統分析
開放資料加值應用實例
範例:實價登錄、用EXCEL一鍵批次下載股市資料
EXCLE VBA(與R語言比較)
PowerPivot增益集
海量資料的分析工具-PowerPivot實作演練
視覺化數位儀表與報表–PowerView資料地圖實作
與大數據課程的經驗
超過20年的程式設計與教學經驗(VBA、VB.NET、ASP.NET、JAVA、ANDROID、PHP等)
台北市公務人員訓練處:Big Data資料加值應用
新北市勞工大學:EXCEL VBA大數據自動化進階
東吳大學進修推廣部:EXCEL VBA 與資料庫雲端設計(初階與進階)
自強工業基金會:從Excel函數到VBA雲端巨量資料庫應用班
多年的實務與教學經驗所累積的課程範例,最短時間學會處理大數據,以提高效率,正確決策。
Big Data海量資料的分析概說:
根據維基百科:
大數據(英語:Big data或Megadata),或稱巨量資料、海量資料、大資料
指的是所涉及的資料量規模巨大到無法透過人工,在合理時間內達到擷取、管理、處理、並整理成為人類所能解讀的形式的資訊。
可用來察覺商業趨勢、判定研究品質、避免疾病擴散、打擊犯罪或測定即時交通路況等;這樣的用途正是大型資料集盛行的原因
維基百科定義
在一份2001年的研究與相關的演講中,麥塔集團(META Group,現為高德納)分析員道格·萊尼(Doug Laney)指出資料增長的挑戰和機遇有三個方向:
量(Volume,資料大小)
速(Velocity,資料輸入輸出的速度)
多變(Variety,多樣性),合稱「3V」或「3Vs」
另外,有機構在3V之外定義第4個V:真實性(Veracity)
大數據必須藉由計算機對資料進行統計、比對、解析方能得出客觀結果。
美國在2012年就開始著手大數據,歐巴馬更在同年投入2億美金在大數據的開發中,更強調大數據會是之後的未來石油。
巨量資料應用的成功案例
Google – 流感趨勢預測
Google發現,某些搜尋關鍵字有助於追蹤流感疫情發展,彙總搜尋資料,提供近乎即時的全球流感疫情趨勢預測
Google曾在美國的九個地區做了測試,發現此技術比聯邦疾病控制和預防中心提前7到14天準確預測了流感爆發
阿里巴巴將消費者數據轉化為企業獲利,小額貸款無需抵押和擔保,直接實現了網路數據的價值。截至2013年,阿里小貸累計獲貸客戶數64.2萬家,累計放款1,722億元人民幣
電視新聞與巨量資料結合,2014年春運(36億人次),百度利用巨量分析觀察大陸過年時人類的遷移行為,並以易懂的視覺化呈現在人們眼前
吳老師 105/2/15
元培醫事科技大學,台北市公務人員訓練處,big data應用,big data定義,big data是什麼,大數據分析教學,excel數據分析,excel數據圖表,大數據應用實例,大數據應用案例,開放資料應用,open data應用
![post-title](https://i.ytimg.com/vi/YWIc-P7KTlI/hqdefault.jpg)
r語言向量 在 吳老師教學部落格 Youtube 的最佳解答
Excel在大數據上的應用(進階函數與VBA)(105/5/20)
上課影音內容:
01_開場簡報說明
02_大數據課程理念與應用範例
03_範例1_GOOGLE試算表複選資料切割說明
04_範例2_樂透彩中獎機率統計函數說明
05_範例2與範例5_股市當日行情表說明
06_範例5_股市當日行情表(錄製巨集&新增工作表&刪除工作表)
07_範例5_股市當日行情表(增加下載功能)
08_範例5_股市當日行情表(增加進度顯示功能)
09_範例4_台北市實價登錄說明
10_建立Power View
完整連結:
https://www.youtube.com/playlist?list=PLgzs-Q3byiYPsxtU9N_n81087ggNwggyK
Big Data海量資料的分析概說:
Big Data資料加值應用與相關範例
如何取得Big Data的方式?
開放資料範例
內政部實價登錄、YAHOO股市資料
GOOGLE表單
範例:GOOGLE試算表複選結果資料切割
如何處理與統計分析Big Data?
EXCLE統計函數
範例:黑名單篩選、樂透彩中獎機率
樞紐分析表
範例:銷貨系統分析
開放資料加值應用實例
範例:實價登錄、用EXCEL一鍵批次下載股市資料
EXCLE VBA(與R語言比較)
PowerPivot增益集
海量資料的分析工具-PowerPivot實作演練
視覺化數位儀表與報表–PowerView資料地圖實作
與大數據課程的經驗
超過20年的程式設計與教學經驗(VBA、VB.NET、ASP.NET、JAVA、ANDROID、PHP等)
台北市公務人員訓練處:Big Data資料加值應用
新北市勞工大學:EXCEL VBA大數據自動化進階
東吳大學進修推廣部:EXCEL VBA 與資料庫雲端設計(初階與進階)
自強工業基金會:從Excel函數到VBA雲端巨量資料庫應用班
多年的實務與教學經驗所累積的課程範例,最短時間學會處理大數據,以提高效率,正確決策。
Big Data海量資料的分析概說:
根據維基百科:
大數據(英語:Big data或Megadata),或稱巨量資料、海量資料、大資料
指的是所涉及的資料量規模巨大到無法透過人工,在合理時間內達到擷取、管理、處理、並整理成為人類所能解讀的形式的資訊。
可用來察覺商業趨勢、判定研究品質、避免疾病擴散、打擊犯罪或測定即時交通路況等;這樣的用途正是大型資料集盛行的原因
維基百科定義
在一份2001年的研究與相關的演講中,麥塔集團(META Group,現為高德納)分析員道格·萊尼(Doug Laney)指出資料增長的挑戰和機遇有三個方向:
量(Volume,資料大小)
速(Velocity,資料輸入輸出的速度)
多變(Variety,多樣性),合稱「3V」或「3Vs」
另外,有機構在3V之外定義第4個V:真實性(Veracity)
大數據必須藉由計算機對資料進行統計、比對、解析方能得出客觀結果。
美國在2012年就開始著手大數據,歐巴馬更在同年投入2億美金在大數據的開發中,更強調大數據會是之後的未來石油。
巨量資料應用的成功案例
Google – 流感趨勢預測
Google發現,某些搜尋關鍵字有助於追蹤流感疫情發展,彙總搜尋資料,提供近乎即時的全球流感疫情趨勢預測
Google曾在美國的九個地區做了測試,發現此技術比聯邦疾病控制和預防中心提前7到14天準確預測了流感爆發
阿里巴巴將消費者數據轉化為企業獲利,小額貸款無需抵押和擔保,直接實現了網路數據的價值。截至2013年,阿里小貸累計獲貸客戶數64.2萬家,累計放款1,722億元人民幣
電視新聞與巨量資料結合,2014年春運(36億人次),百度利用巨量分析觀察大陸過年時人類的遷移行為,並以易懂的視覺化呈現在人們眼前
吳老師 105/2/15
元培醫事科技大學,台北市公務人員訓練處,big data應用,big data定義,big data是什麼,大數據分析教學,excel數據分析,excel數據圖表,大數據應用實例,大數據應用案例,開放資料應用,open data應用
![post-title](https://i.ytimg.com/vi/NvwSQIZPRc8/hqdefault.jpg)